Advertisement

Polypeptides in Mitochondrial Electron-Transfer Complexes

  • Takayuki Ozawa
  • Morimitsu Nishikimi
  • Hiroshi Suzuki
  • Masashi Tanaka
  • Yoshiharu Shimomura

Summary

We established an isolation method for ubiquinone-binding proteins (QPs) from either mitochondria or electron-transfer particles, and found that at least 29% of the total coenzyme Q in the inner membrane was bound to QPs. The QP from Complex I (QP-I) was identified with a 13-kDa polypeptide, and the QP from Complex III (QP-III) with a 12.4-kDa polypeptide. We also isolated subunits of Complex III: the iron-sulfur protein, cytochrome c 1, cytochrome b, and QP-III, and core proteins in their functional states. In vitro translation of rat liver poly(A)+ RNA followed by immunoprecipitation with antibody directed against QP-III yielded a polypeptide with a molecular weight that was the same as that of the mature protein. It was also found that this polypeptide was imported into mitochondria and became resistant to trypsin treatment, and that the import required the energized state of the inner membrane. A cDNA for human cytochrome c 1 was cloned using the λgtll expression vector, and the sequence analysis showed that the amino acid sequence deduced from the DNA sequence was quite similar to that of bovine heart cytochrome c 1 determined by amino acid sequence analysis. Together with the structural data from the crystallographic analysis of Complex III, the sequence data would provide a basis for elucidation of structure and function of the complex. Immunoblotting technique gave us information on the molecular level regarding the deficiency of subunits of complexes in patients with mitochondrial cytopathies.

Keywords

Mitochondrial Myopathy Mitochondrial Cytopathies Postmitochondrial Supernatant Beef Heart Mitochondrion Bovine Cytochrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Hatefi, A. G. Haavik, L. R. Fowler, and D. E. Griffiths, Studies on the electron transfer system, J. Biol. Chem. 237: 2661 (1962).Google Scholar
  2. 2.
    Y. Hatefi, A. G. Haavik, and D. E. Griffiths, Studies on the electron tranfer system, J. Biol. Chem. 237: 1676 (1962).Google Scholar
  3. 3.
    H. Fernandez-Moran, T. Oda, P.U. Blair, and D. E. Green, Macromolecular repeating unit of mitochondrial structure and function, J. Cell. Biol. 22: 63 (1964).CrossRefGoogle Scholar
  4. 4.
    A. Tzagoloff, K. H. Byington, and D. H. MacLennan, Studies on the mitochondrial adenosine triphosphatase system, J. Biol. Chem. 243: 2405 (1968).Google Scholar
  5. 5.
    D. H. MacLennan, J. M. Smoly, and A. Tzagoloff, Studies on the mitochondrial adenosine triphosphatase system, J. Biol. Chem. 243: 1589 (1968).Google Scholar
  6. 6.
    A. Tzagoloff, D. H. MacLennan, and K. H. Byington, Studies on the mitochondrial adenosine triphosphatase system, Biochemistry 7: 1596 (1968).CrossRefGoogle Scholar
  7. 7.
    M. E. Pullman, H. S. Penefsky, A. Datta, and E. Racker, Partial resolution of the enzymes catalyzing oxidative phosphorylation, J. Biol. Chem. 235: 3322 (1962).Google Scholar
  8. 8.
    Y. Kagawa, and E. Racker, Partial resolution of the enzyme catalyzing oxidative phosphorylation, J. Biol. Chem. 246: 5477 (1971).Google Scholar
  9. 9.
    Y. Kagawa, and E. Racker, Partial resolution of the enzyme catalyzing oxidative phosphorylation, J. Biol. Chem. 241: 2461 (1966).Google Scholar
  10. 10.
    E. Racker, and L. L. Horstman, Partial resolution of the enzyme catalyzing oxidative phosphorylation, J. Biol. Chem. 242: 2547 (1967).Google Scholar
  11. 11.
    P. Mitchell, Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism, Nature(London) 191: 144 (1961).CrossRefGoogle Scholar
  12. 12.
    P. Mitchell, “Chemiosmotic coupling in oxidative and photo-synthetic phosphorylation,” Glynn Research Ltd, Bodmin, England (1966).Google Scholar
  13. 13.
    P. Mitchell, Chemiosmotic molecular mechanism for protontranslocating adenosine triphosphatases, FEBS Lett. 43: 189 (1974).CrossRefGoogle Scholar
  14. 14.
    Y. Hatefi, Y. M. Galante, L. Frigeri, and D. L. Stiggall, Structure and compositon of the mitochondrial energy transduction system, in “Biomembranes,” K. Yagi, ed., Japan Sci. Soc. Press, Tokyo (1979)Google Scholar
  15. 15.
    H. Suzuki, and T. Ozawa, Novel isolation of ubiquinone proteins located in different sites of beef heart mitochondrial respiratory, Biochem. Int. 9: 563 (1984).Google Scholar
  16. 16.
    Y. M. Galante, and Y. Hatefi, Resolution of Complex I and isolation of NADH dehydrogenase and an iron-sulfur protein, in: “Methods in Enzymology,” S. Fleischer, and L. Packer, eds., Academic Press, New York (1978).Google Scholar
  17. 17.
    M. Nishikimi, Y. Shimomura, H. Yamada, and T. Ozawa, Detection of iron-sulfur center-containing subunits of mitochondrial NADH dehydrogenase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by high-performance gel permeation chromatography, Biochem. Biophys. Res. Commun. 120: 237 (1984).Google Scholar
  18. 18.
    H.Suzuki, and T. Ozawa, Quantities of ubiquinone bound to proteins in beef heart mitochondria, Biochem. Biophys. Res. Commun. 124: 889 (1984).Google Scholar
  19. 19.
    H. Suzuki, and T. Ozawa, An ubiquinone-binding protein in mitochondrial NADH-ubiquinone reductase (Complex I), Biochem. Biophys. Res. Commun. 138: 1237 (1986).CrossRefGoogle Scholar
  20. 20.
    H. Suzuki, and T. E. King, Evidence of an ubisemiquinone radical(s) from the NADH-ubiquinone reductase of the mitochondrial respiratory chain, J. Biol. Chem. 258: 352 (1983).Google Scholar
  21. 21.
    Y. Shimomura, and T. Ozawa, Preferential dissociation of iron- sulfur protein from Complex III of mitochondrial electron-transfer chain by depletion of boundary cardiolipin, Biochem. Int. 5: 1 (1982).Google Scholar
  22. 22.
    Y. Shimomura, and T. Ozawa, Integral polypeptide of Complex III of the mitochondrial electron-transfer chain, Biochem. Int. 8: 187 (1984).Google Scholar
  23. 23.
    Y. Shimomura, M. Nishikimi, and T. Ozawa, Novel isolation and reconstitution of the iron-sulfur protein of mitochondrial Complex III, Biochem. Int. 8: 19 (1984).Google Scholar
  24. 24.
    Y. Shimomura, M. Nishikimi, and T. Ozawa, Isolation and reconstitution of the iron-sulfur protein in ubiquinol-cytochrome c oxidore- ductase complex, J. Biol. Chem. 259: 14059 (1984).Google Scholar
  25. 25.
    T. Ozawa, Mitochondrial electron transport system, in: “Transport and bioenergetics in biomembranes,” R. Sato, and Y. kagawa, eds., Japan Sci. Soc. Press, Tokyo (1982).Google Scholar
  26. 26.
    Y. Shimomura, M. Nishikimi, and T. Ozawa, Purification of the iron-sulfur protein, ubiquinone-bining protein, and cytochrome cx from a single source of mitochondrial Complex III, Anal. Biochem. 153: 126 (1986).Google Scholar
  27. 27.
    Y. Shimomura, M. Nishikimi, and T. Ozawa, Novel purification of cytochrome cx from mitochondrial Complex III, J. Biol. Chem. 260: 15075 (1985).Google Scholar
  28. 28.
    H. Nakahara, Y. Shimomura, and T. Ozawa, Purification of cytochrome b from complex III of beef heart mitochondria, Biophys. Res. Commun. 132: 1166 (1985).Google Scholar
  29. 29.
    M. Nishikimi, Y. Shimomura, and T. Ozawa, Immunochemical demonstration of the iron-sulfur protein in Complex III of mitochondrial electron- transfer chain, Biochem. Int. 7: 793 (1983).Google Scholar
  30. 30.
    M. Nishikimi, Y. Shimomura, and T. Ozawa, The iron-sulfur protein of cytochrome be1 complex, J. Biol. Chem 260: 10398 (1985).Google Scholar
  31. 31.
    M. Nishikimi, Y. Shimomura, and T. Ozawa, Cell-free synthesis of ubiquinone-binding protein of mitochondrial cytochrome bcx complex, Biochem. Biophys. Res. Commun. 138: 1291 (1986).CrossRefGoogle Scholar
  32. 32.
    M. Nishikimi, H. Suzuki, S. Ohta, T. Sakurai, Y. Shimomura, M. Tanaka, Y. Kagawa, and T. Ozawa, Isolation of a cDNA clone for human cytochrome cx from a Agtll expression library, Biochem. Biophys. Res. Commun. submitted (1987).Google Scholar
  33. 33.
    S. Wakabayashi, H. Matsubara, C.H. Kim, and T.E. King, Structural studies of bovine heart cytochrome c1 l9 J. Biol. Chem. 257: 9335 (1982).Google Scholar
  34. 34.
    T. Ozawa, H. Suzuki, and M. Tanaka, Crystallization of part of the mitochondrial electron transfer chain: Cytochrome c oxidase- cytochrome c complex, Proc. Natl. Acad. Sci. USA 77: 928 (1980).CrossRefGoogle Scholar
  35. 35.
    T. Ozawa, M. Tanaka, and T. Wakabayashi, Crystallization of mitochondrial cytochrome oxidase, Proc. Natl. Acad. Sci. USA 79: 7175 (1982).CrossRefGoogle Scholar
  36. 36.
    T. Ozawa, Crystallization of intrinsic membrane proteins, J. Bioenerg. Biomembr. 16: 321 (1984).CrossRefGoogle Scholar
  37. 37.
    T. Ozawa, M. Tanaka, and Y. Shimomura, Crystallization of the middle part of the mitochondrial electron transfer chain: Cytochrome bc1-cytochrome c complex, Proc. Natl. Acad. Sci. USA 77: 5084 (1980).CrossRefGoogle Scholar
  38. 38.
    T. Ozawa, M. Tanaka, and Y. Shimomura, Crystallization of cytochrome be i complex, Proc. Natl. Acad. Sci. USA 80: 921 (1983).CrossRefGoogle Scholar
  39. 39.
    A. Maurer, M. Tanaka, T. Ozawa, and S. Fleischer, Purification and crystallization of the calcium binding protein of sarcoplasmic reticulum from skeletal muscle, Proc. Natl. Acad. Sci. USA 82: 4036 (1983)CrossRefGoogle Scholar
  40. 40.
    M. Tanaka, M. Nishikimi, H. Suzuki, T. Ozawa, Y. Koga, and I. Nonaka, Partial deficiency of subunits in Complex I or IV of patients with mitochondrial myopathies, Biochem. Int. 14: 525 (1987).Google Scholar
  41. 41.
    M. Tanaka, M. Nishikimi, H. Suzuki, Y. Koga, and I. Nonaka, Deficiency of subunits of Complex I or IV in mitochondrial myopathies: Immunochemical and immunohistochemical study, J. Inher. Metab. Pis, (in press)Google Scholar
  42. 42.
    M. Tanaka, M. Nishikimi, T. Ozawa, S. Miyabayashi, and K. Tada, Lack of subunit II of cytochrome c oxidase in a patient with mitochondrial myopathy, Ann. N.Y. Acad. Sci. 488: 503 (1987).CrossRefGoogle Scholar
  43. 43.
    M. Tanaka, M. Nishikimi, H. Suzuki, T. Ozawa, M. Nishizawa, K. Tanaka, and T. Miyatake, Deficiency of subunits in heart mitochondrial NADH- ubiquinone oxidoreductase of a patient with mitochondrial encephalopathy and cardiomyopathy, Biochem. Biophys. Res. Commun. 140: 88 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Takayuki Ozawa
    • 1
  • Morimitsu Nishikimi
    • 1
  • Hiroshi Suzuki
    • 1
  • Masashi Tanaka
    • 1
  • Yoshiharu Shimomura
    • 1
  1. 1.Department of Biomedical Chemistry, Faculty of MedicineUniversity of NagoyaNagoyaJapan

Personalised recommendations