Advertisement

Heterogeneous Efficiencies of mRNA Translation in Human Mitochondria

  • Anne Chomyn
  • Giuseppe Attardi

Abstract

The recently completed elucidation of the informational content of the human mitochondrial genome (Chomyn et al., 1986), taken as a prototype of all mammalian mitochondrial genomes, has set the stage for an analysis of the mechanisms and regulation of gene expression in this system. The well established mode of mitochondrial DNA (mtDNA) transcription and RNA processing in mammalian mitochondria (Ojala et al., 1981), while admirable in its simplicity and economy, raises questions as concerns the mechanisms which control the differential expression of mitochondrial genes. In particular, one would like to know how the regulation of the steady state amounts of the different RNA species is achieved in a genome where both strands are transcribed in the form of polycistronic molecules comprising rRNA, mRNA and tRNA sequences (Fig. 1). Furthermore, one can ask whether, in addition to a control at the transcriptional and RNA processing levels, there is also a control at the translational level.

Keywords

NADH Dehydrogenase Subunit Mammalian Mitochondrion Human Mitochondrion Human Mitochondrial Genome Oxidative Phosphorylation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amalric, F., Merkel, C., Gelfand, R., and Attardi, G., 1978: Fractionation of mitochondrial RNA from HeLa cells by high-resolution electrophoresis under strongly denaturing conditions, J. Mol. Biol. 118, 1–23.Google Scholar
  2. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G., 1981, Sequence and organization of the human mitochondrial genome. Nature 290, 457–465.CrossRefGoogle Scholar
  3. Attardi, G., Cantatore, P. Chomyn, A., Crews, S., Gelfand, R., Merkel, C., Montoya, J., and Ojala, D., 1982, A comprehensive view of mitochondrial gene expression in human cells, in Mitochondrial Genes, P. Slonimski, P. Borst, and G. Attardi, eds., pp. 51–71. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  4. Attardi, G., Chomyn, A., Doolittle, R. F., Mariottini, P., and Ragan, C. I., 1986, Seven unidentified reading frames of human mitochondrial DNA encode subunits of the respiratory chain NADH dehydrogenase, Cold Spring Harbor Symp. Quant. Biol. 51, 103–114.Google Scholar
  5. Attardi, G., 1986, The elucidation of the human mitochondrial genome: A historical perspective, Bioassays 5, 34–39.CrossRefGoogle Scholar
  6. Ching, E., and Attardi, G., 1982, High resolution electrophoretic fractionation and partial characterization of the mitochondrial translation products from HeLa cells, Biochemistry 21, 3188–3195; Corr. Biochemistry 24, 7853 (1985).Google Scholar
  7. Chomyn, A., Mariottini, P., Gonzalez-Cadavid, N., Attardi, G., Strong, D. D., Trovato, D., Riley, M., and Doolittle, R. F., 1983, Identification of the polypeptides encoded in the AT Pase 6 gene and in the unassigned reading frames 1 and 3 of human mt DNA, Proc. Natl. Acad. Sci. USA 80, 5535–5539.CrossRefGoogle Scholar
  8. Chomyn, A., Mariottini, P., Cleeter, M. W. J., Ragan, C. I., Matsuno-Yagi, A., Hatefi, Y., Doolittle, R. F., and Attardi, G., 1985, Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory chain NADH dehydrogenase, Nature 314, 592–597.CrossRefGoogle Scholar
  9. Chomyn, A., Cleeter, M. W. J., Ragan, C. I., Riley, M., Doolittle, R. F., and Attardi, G., 1986, URF6, the last unidentified reading frame of human mitochondrial DNA, codes for an NADH dehydrogenase subunit, Science 234, 614–618.CrossRefGoogle Scholar
  10. Costanzo, M. C., Seaver, E. C., and Fox, T., 1986, At least two nuclear gene products are specifically required for translation of a single yeast mitochondrial mRNA, The EMBO Journal 5, 3637–3641.Google Scholar
  11. Costanzo, M. C., and Fox, M., 1986, Product of Saccharomyces cerevisiae nuclear gene PET494 activates translation of a specific mitochondrial mRNA, Molec. Cell. Biology 6, 3694–3703.Google Scholar
  12. Dieckmann, C. L., and Tzagoloff, A., 1985, Assembly of the mitochondrial membrane system: CBP6, a yeast nuclear gene necessary for synthesis of cytochrome b, J. Biol. Chem. 260, 1513–1520.Google Scholar
  13. Ebner, E., Mennucci, L., and Schatz, G.,. 1973, Mitochondrial assembly in respiration-deficient mutants of Saccharomyces cerevisiae. I. Effect of nuclear mutations on mitochondrial protein synthesis, J. Biol. Chem. 248, 5360–5368.Google Scholar
  14. Fox, T. D., 1986, Nuclear gene products required for translation of specific mitochondrially-coded mRNA s in yeast, Trends in Genetics 2, 97–100.CrossRefGoogle Scholar
  15. Gelfand, R., and Attardi, G., 1981, Synthesis and turnover of mitochondrial ribonucleic acid in HeLa cells: The mature ribosomal and messenger ribonucleic acid species are metabolically unstable, Molec. Cell. Biol. 1, 497–511.Google Scholar
  16. Hare, J. F., Ching, E., and Attardi, G., 1980, Isolation, subunit composition, and site of synthesis of human cytochrome c oxidase, Biochemistry 19, 2023–2030.CrossRefGoogle Scholar
  17. Hare, J. F., and Hodges, R. 1982, Turnover of mitochondrial inner membrane proteins in hepatoma monolayer cultures, J. Biol. Chem. 257, 3575–3580.Google Scholar
  18. Hatefi, Y., Ragan, C. I., and Galante, Y. M., 1985, The enzymes and the enzyme complexes of the mitochondrial oxidative phosphorylation system, in The Enzymes of Biological Membranes, Vol. 4, A. Martonosi, ed., pp. 1–70, Plenum Press, New York.Google Scholar
  19. Mariottini, P., Chomyn, A., Attardi, G., Trovato, D., Strong, D. D., and Doolittle, R. F., 1983, Antibodies against synthetic peptides reveal that the unidentified reading frame A6L, overlapping the ATPase 6 gene, is expressed in human mitochondria, Cell 32, 1269–1277.CrossRefGoogle Scholar
  20. Mariottini, P., Chomyn, A., Riley, M., Cottrell, B., Dootlittle, R. F., and Attardi, G., 1986, Identification of the polypeptides encoded in the unassigned reading frames 2, 4, 4L and 5 of human mitochondrial DNA, Proc. Natl. Acad. Sci. USA 83, 1563–1567.Google Scholar
  21. Montoya, J., Ojala, D., and Attardi, G., 1981, Distinctive features of the 5′- terminal sequences of the human mitochondrial m RNA s, Nature 290, 465–470.CrossRefGoogle Scholar
  22. Montoya, J., Gaines, G., and Attardi, G., 1983, The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units, Cell 34, 151–159.CrossRefGoogle Scholar
  23. Mueller, P. P., Reif, M. K., Zonghou, S., Sengstag, C., Mason, T. L., and Fox, T. D., 1984, A nuclear mutation that posttranscriptionally blocks accumulation of a yeast mitochondrial gene product can be suppressed by a mitochondrial gene rearrangement, J. Mol. Biol. 175, 431–452.Google Scholar
  24. Nussinov, R., and Jacobson, A. B., 1980, Fast algorithm for predicting the secondary structure of single-stranded RNA, Proc. Natl. Acad. Sci. USA 77, 6309–6313.CrossRefGoogle Scholar
  25. Ojala, D., Merkel, C., Gelfand, R., and Attardi, G., 1980, The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA, Cell 22, 393–403.CrossRefGoogle Scholar
  26. Ojala, D., Montoya, J., and Attardi, G., 1981, The tRNA punctuation model of RNA processing in human mitochondria, Nature 290, 470–474.CrossRefGoogle Scholar
  27. Oliver, N. A., Greenberg, B. D., and Wallace, D. C., 1983, Assignment of a polymorphic polypeptide to the human mitochondrial DNA unidentified reading frame 3 gene by a new peptide mapping strategy, J. Biol. Chem. 258, 5834–5839.Google Scholar
  28. Rödel, G., Koerte, A., and Kandewitz, F., 1985, Mitochondrial suppression of a yeast nuclear mutation which affects the translation of the mitochondrial apocytochrome b transcript, Curr. Genet. 9, 641–648.Google Scholar
  29. Rödel, G., 1986, Two yeast nuclear genes, CBS1 and CBS2, are required for translation of mitochondrial transcripts bearing the 5f-untranslated COB leader, Curr. Genet. 11, 41–45.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Anne Chomyn
    • 1
  • Giuseppe Attardi
    • 1
  1. 1.Division of BiologyCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations