Advertisement

Cytochrome Systems: From Discovery to Present Developments

  • E. C. Slater

Abstract

On March 21, at Magdalene College, Cambridge, where David Keilin was a Fellow, former students, colleagues and friends remembered his birth precisely 100 years earlier. It is appropriate, then, that in this Introductory Lecture to the Plenary Session at the first Bari Symposium exclusively devoted to cytochrome, we play homage to its discoverer. Although it is now 23 years since Keilin died, former students remain under the influence of his inspiring example and remain conscious of the great debt that they owe him. How often do we still think when confronted by a scientific problem: “how would Keilin have tackled it?” — or,when struggling to express oneself when writing up one’s work, “how would Keilin have put it?” For those of us who had the enormous good fortune to work under his guidance at the Molteno Institute in Cambridge — and I was lucky enough to do so for nine years — Keilin is our scientific father.

Keywords

Respiratory Chain Copper Atom Collision Complex Introductory Lecture Respiratory Pigment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Keilin, D. (1966) The History of Cell Respiration and Cytochrome, University Press, CambridgeGoogle Scholar
  2. 2.
    Keilin, D. (1925) Proc. Roy. Soc. B 98, 312–339CrossRefGoogle Scholar
  3. 3.
    MacMunn, CA (1886) Phil. Trans. 177, 267–298CrossRefGoogle Scholar
  4. 4.
    Hoppe-Seyler, F. (1890) Z. Physiol. Chem. 14, 106–108Google Scholar
  5. 5.
    Keilin, D. & Hartree, E.F. (1939) Proc.Roy. Soc. B 127, 167–191Google Scholar
  6. 6.
    Keilin, D. & Hartree, E.F. (1955) Nature 176, 200–206CrossRefGoogle Scholar
  7. 7.
    Okunuki, K. &Yakushiji, E. (1941) Proc. Imp. Acad. Japan 17, 163–265CrossRefGoogle Scholar
  8. 8.
    Chance, B. (1958) J. Biol. Chem. 233, 1223–1229Google Scholar
  9. 9.
    Yaoi, H. & Tamiya, H. (1928) Proc. Imp. Acad. Japan 4, 436–439Google Scholar
  10. 10.
    Hill, R. &Scarisbrick, R. (1951) New Phytol. 50, 98–111CrossRefGoogle Scholar
  11. 11.
    Warburg, 0. (1926) Biochem. Z. 177, 471–486Google Scholar
  12. 12.
    Battelli, F. & Stern, L. (1912) Biochem. Z. 46, 343–366Google Scholar
  13. 13.
    Keilin, D. (1927) Nature 119, 670–671CrossRefGoogle Scholar
  14. 14.
    Warburg, 0. (1927) Naturwissenschaften 15, 346Google Scholar
  15. 15.
    Keilin, D. (1927) C. R. Soc. Biol. Paris, 96, S.P.39-S.P. 68Google Scholar
  16. 16.
    Keilin, D. & Hartree, E.F. (1938) Proc. Roy. Soc. B 125, 171–186CrossRefGoogle Scholar
  17. 17.
    Chance, B. (1952) J. Biol. Chem. 202, 397–406Google Scholar
  18. 18.
    Keilin, D & Hartree, E.F. (1938) Nature 141, 870–871CrossRefGoogle Scholar
  19. 19.
    Eichel. B., Wainio, W.W., Person, P. & Cooperstein, S.J. (1950) J. Biol. Chem. 183, 89–103Google Scholar
  20. 20.
    Takemori, S., Sekuzu, I. & Okunuki, K. (1960) Biochim. Biophys. Acta 38, 158–160CrossRefGoogle Scholar
  21. 21.
    Beinert, H., Griffiths, D.E., Wharton, D.C. & Sands, R.H. (1962) J. Biol. Chem. 237, 2337–2346Google Scholar
  22. 22.
    Steffens, G.C.M., Biewald, R. & Buse, 6. (1986) EBEC Short Rep. 4, 191Google Scholar
  23. 23.
    Chance, B., Noqui, A. & Powers, L. (1985) in Achievements and Perspectives of Mitochondrial Research, Vol. 1, Bioenergetics (Quagliariello, E.,Slater, E.C., Polmieri, F., Saccone.C. & Kroon, A.M., eds) pp 45–59, Elsevier, AmsterdamGoogle Scholar
  24. 24.
    Keilin, D. (1930) Proc. Roy. Soc. B 106, 418–444CrossRefGoogle Scholar
  25. 25.
    Keilin, D. & Hartree, E.F. (1949) Biochem. J. 44, 205–218Google Scholar
  26. 26.
    Slater, E.C. (1948) Nature 161, 405–406CrossRefGoogle Scholar
  27. 27.
    Slater, E.C. & de Yries, S. (1980) Nature 288, 717–718Google Scholar
  28. 28.
    Rieske, J.S., Hansen, R.E. & Zaugg, W.S. (1964) J. Biol. Chem. 239, 3017–3022Google Scholar
  29. 29.
    de Vries, S., Albracht, S.P.J., Berden, JA & Slater, E.C.(1981) d. Biol. Chem. 256, 11996–11998Google Scholar
  30. 30.
    Mitchell, P. (1975) FEBS Lett. 56,1 –6Google Scholar
  31. 31.
    Keilin, D. & Haftree, E.F. (1940) Proc. Roy. Soc. B 129, 277–306CrossRefGoogle Scholar
  32. 32.
    Keilin, O. & Slater, E.C. (1953) Brit. Med. Bull. 9, 89–97Google Scholar
  33. 33.
    Hogeboom, G.H., Claude, A & Hotchkiss, R.D. (1946) J. Biol. Chem. 165, 615–629Google Scholar
  34. 34.
    Lehninger, A.L. & Kennedy, E.P. (1948) J. Biol. Chem. 172, 753–771.Google Scholar
  35. 35.
    Pelede, O.E. (1952) Anat. Ree. 114, 427CrossRefGoogle Scholar
  36. 36.
    Sjöstrand, F.S. (1952) Nature. 171, 30–31CrossRefGoogle Scholar
  37. 37.
    Cleland, K.W. & Slater, E.C. (1953) Biochem. d. 53, 547–566Google Scholar
  38. 38.
    Slater, E.C. (1949) Biochem. J. 44, 305–318Google Scholar
  39. 39.
    Slater. E.C. (1949) Biochem. J. 45. 1–8Google Scholar
  40. 40.
    van Buuren.J.H., van Gelder, B.F. & Eggelte, TA (1971) Biochim. Biophys. Acta 234, 468–480Google Scholar
  41. 41.
    Mitchell, P. (1966) Biol. Rev. 41, 445–502CrossRefGoogle Scholar
  42. 42.
    Lee, C.P. & Ernster, L. (1966) in Symp. on Regulation of Metabolie Processes In Mitochondria (Tager, J.M., Papa, S., Quagliariello, E. & Slater, E.C., eds.) pp 218–236, Elsevier, AmsterdamGoogle Scholar
  43. 43.
    Wilms, J.. Veerman, E.C.I., König, B.W., DeIcker. H.L. & van Gelder, B.F. (1981) Biochim. Biophys. Acta 635, 13–24Google Scholar
  44. 44.
    Eytan, 0.0., Carroll, R.C., Schate, G. & Racker, E. (1975) J. Biol. Chem. 250, 8598–8603Google Scholar
  45. 45.
    Chance, B., Erecinska, M. & Lee, C.P. (1970) Proc. Nat. Acad. Sci. U.S. 66, 928–935CrossRefGoogle Scholar
  46. 46.
    Lee, C.P., Ernster, L. & Chance, B. (1969) Eur. J. Biochem. 8, 153–163CrossRefGoogle Scholar
  47. 47.
    Scholes, TA & Hinkle, P.C. (1984) Biochemistry 23, 3341–3345CrossRefGoogle Scholar
  48. 48.
    Friedkin, M. & Lehninger, AL. (1948) J. Biol. Chem. 174, 757–758Google Scholar
  49. 49.
    Slater, E.C. (1950) Nature 166, 982–983CrossRefGoogle Scholar
  50. 50.
    Nielsen, S.O & Lehninger, AL. (1954) J. Amer. Chem. Soc. 76, 3860Google Scholar
  51. 51.
    Slater, E.C. (1954) Nature 174, 1143CrossRefGoogle Scholar
  52. 52.
    Lehning, AL. (1965) The Mitochondrion, Benjamin, New YorkGoogle Scholar
  53. 53.
    Chance, B. & Wiilliams, G.R. (1956) Adv. Enzymol. 17, 65–134Google Scholar
  54. 54.
    Slater, E.C. (1949) Biochem. J. 45, 14–30Google Scholar
  55. 55.
    Green, O.E., Wharton, D.C., Tzagoloff, A, Rieske, J.S. & Brierley, G.P. (1965) in Oxidases and Related Redox Systems (King, T.E., Mason, H.S. & Morrison, M.,eds.), Vol. 2, pp. 1032–1076, Wiley, New YorkGoogle Scholar
  56. 56.
    Hackenbrock, C.R., Chazotte, B. & Gupte, S.S. (1986) J. Bioenerg. Biomembranes 18, 331–368CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • E. C. Slater
    • 1
  1. 1.Department of BiochemistryUniversity of SouthamptonSouthamptonUK

Personalised recommendations