Sintering Theory for Crystalline Solids

  • Alan W. Searcy
Part of the Materials Science Research book series (MSR, volume 21)


The usual assumption that sintering is driven by differences in surface curvature is known to be a weak component of sintering theory for crystalline solids.1,2 Another usual assumption of sintering theory--the implicit assumption that temperature gradients need not be considered--may often be mistaken. Experimental observations with which these assumptions are not consistent are cited in the next section of this paper.


Temperature Gradient Surface Diffusion Screw Dislocation Vapor Transport Usual Assumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.E. Burke, Ch. 18 in: “The Chemical and Mechanical Behavior of Inorganic Materials,” A.W. Searcy, D. V. Ragone and U. Colombo. Eds. Wiley-Interscience, New York, 1970.Google Scholar
  2. 2.
    D.L. Johnson, Solid State Sintering Models, in: “Sintering Processes,” Mat. Sci. Res. 13, G.C. Kuczynski, Ed. Plenum, New York, 1980.Google Scholar
  3. 3.
    A.W. Searcy, The Influence of Molecular Motions on the Stabilities and Shapes of Solid Particles, J. Chem. Phys. 81: 2489 (1985).CrossRefGoogle Scholar
  4. 4.
    A.W. Searcy, The Influence of Surfaces on Vapor Pressures, J. Chem. Phys. 83: 3095 (1985).CrossRefGoogle Scholar
  5. 5.
    A.W. Searcy, Driving Force for Sintering of Particles with Anisotropic Surface Energies, J. Am. Ceram. Soc. 68: C-267 (1985).Google Scholar
  6. 6.
    A.W. Searcy, Origins of Planar, Concave and Convex Boundaries During Exaggerated Grain Growth, J. Am. Ceram. Soc. 69: C-91 (1986).Google Scholar
  7. 7.
    A.W. Searcy, Theory for Sintering in Temperature Gradients: The Role of Long Range Mass Transport, J. Am. Ceram. Soc., SubmittedGoogle Scholar
  8. 8.
    A.W. Searcy, to be published.Google Scholar
  9. 9.
    P. Kumar and D.L. Johnson, Sintering of CoO, J. Am. Ceram. Soc. 57: 62 (1974).CrossRefGoogle Scholar
  10. 10.
    M.G. Kim, U. Dahmen and A.W. Searcy, to be published.Google Scholar
  11. 11.
    J.E. Burke, Sintering in Ceramics, in: “Progress in Ceramic Science”, Vol. 3, J.E. Burke, ed., Pergamon, New York (1963) p. 199.Google Scholar
  12. 12.
    W.D. Kingery, H.K. Bowen and D.R. Uhlmann, “Introduction to Ceramics,” Wiley-Interscience, New York (1976).Google Scholar
  13. 13.
    L.C. De Jonghe, unpublished microstructures obtained in the course of work published in Fast Ion Conductors, J. Am. Ceram. Soc., 62: 289 (1985).CrossRefGoogle Scholar
  14. 14.
    A.C. Hott and S.C. Carniglia, “A Study of Grain Growth in Beryllium Oxide Using a New Transmitted Light Microscope,” Rpt. NAA-SR 11171 (a film) (1965).Google Scholar
  15. 15.
    J.A. Pask, H. Palmour III, and S.C. Carniglia, private communications.Google Scholar
  16. 16.
    D.R. Olander, “Fundamental Aspects of Nuclear Reactor Fuel Elements,” Tech. Inf. Center, Office of Public Affairs Energy Research and Development Admin. (1976), p. 163.CrossRefGoogle Scholar
  17. 17.
    L.B. Loeb, “The Kinetic Theory of Gases”, Dover, New York, 1961, p. 358.Google Scholar
  18. 18.
    J.W. Gibbs, “The Scientific Papers. Vol. 1. Thermodynamics,” Dover, New York, (1961), Chap. 3.Google Scholar
  19. 19.
    P. Curie, Bull. Soc. Min. France 81: 145 (1885).Google Scholar
  20. 20.
    J.P. Hirth and G.M. Pound, “Condensation and Evaporation,” Pergamon, Oxford, England, (1963).Google Scholar
  21. 21.
    A. Morell and A. Hermosin, Fast Sintering of Soft Mn-Zn and Ni-Zn Ferrite Pot Cores, Am. Ceram. Soc. Bull. 59: 626 (1980).Google Scholar
  22. 22.
    M.P. Harmer and R.J. Brook, Fast Firing-Microstructural Benefits, J. Brit. Ceram. Soc. 80: 148 (1981).Google Scholar
  23. 23.
    P. Braudeau, A. Morell and C. Monty, Influence DfUn Gradient De Temperature Sur Le Transport De Matiere Dans L’Alumine, Ann. Chim, Fr. 1985: 261.Google Scholar
  24. 24.
    N.S. Jacobson, E.J. Opila, and A.W. Searcy, The Surface Diffusion of High Temperature Vaport in Porous Alumina, High Temp. Sei. V7: 53 (1984).Google Scholar
  25. 25.
    D. Beruto, L. Barco and A.W. Searcy, CC-Catalyzed Surface Area and Porosity Changes inHigh-Surface-Area CaO Aggregates, J. Am. Ceram. Soc. 67: 512 (1984).CrossRefGoogle Scholar
  26. 26.
    P.J. Lemaire and H.K. Bowen, Migration of Small Pores in Potasium Chloride Due to a Temperature Gradient, J. Am. Ceram. Soc. 65: (1982).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Alan W. Searcy
    • 1
    • 2
  1. 1.Materials and Molecular Research Division Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Materials Science and Mineral EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations