Monoclonal Antibodies Reactive with the neu Oncogene Product Inhibit the Neoplastic Properties of neu-Transformed Cells

  • Jeffrey A. Drebin
  • Victoria C. Link
  • Mark I. Greene


The past decade has seen major advances in our understanding of the molecular events involved in malignant transformation. Studies of RNA tumor viruses initially identified specific genes that were able to confer neoplastic properties on cells in tissue culture and that were responsible for tumor formation in vivo.(1) These genes were termed oncogenes. Subsequently, it was shown that genes closely related to retroviral oncogenes (protooncogenes) exist in the genomes of all eukaryotic cells. These protooncogenes have been highly conserved in evolution and are likely to play important roles in normal growth and development.(1,2) It is now clear that retroviruses have acquired their oncogenes by retroviral transduction of cellular protooncogenes. It is thought that elevated expression and/or structural alterations of protooncogenes within the retroviral genome are responsible for the abilities of some retroviruses to cause neoplastic transformation.


Epidermal Growth Factor Receptor Ascites Fluid Specific Lysis Cellular Oncogene erbB Oncogene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop, J. M., and Varmus, H. E., 1982, Function and origin of retroviral transforming genes, in: RNA Tumor Viruses. (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 999–1109.Google Scholar
  2. 2.
    Bishop, J. M., 1983, Cellular oncogenes and retroviruses, Annu. Rev. Biochem. 52:301–354.PubMedCrossRefGoogle Scholar
  3. 3.
    Weinberg, R. A., 1985, The action of oncogenes in the cytoplasm and the nucleus, Science 230:770–775.PubMedCrossRefGoogle Scholar
  4. 4.
    Cooper, G. M., 1982, Cellular transforming genes, Science 217:801–806.PubMedCrossRefGoogle Scholar
  5. 5.
    Land, H., Parada, L. F., and Weinberg, R. A., 1983, Cellular oncogenes and multistep carcinogenesis, Science 222:771–778.PubMedCrossRefGoogle Scholar
  6. 6.
    Santos, E., Martin-Zanca, D., Reddy, E. P., Pierotti, M. A., Porta, G. D., and Barbacid, M., 1984, Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient, Science 223:661–664.PubMedCrossRefGoogle Scholar
  7. 7.
    Feig, L. A., Bast, R. C., Knapp, R. C., and Cooper, G. M., 1984, Somatic activation of rask gene in a human ovarian carcinoma, Science 223:698–700.PubMedCrossRefGoogle Scholar
  8. 8.
    Taub, R., Kirsch, I., Morton, C., Lenoir, G., Swan, D., Tronick, S., Aaronson, S., and Leder, P., 1982, Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells, Proc. Natl. Acad. Sci. USA 79:7837–7841.PubMedCrossRefGoogle Scholar
  9. 9.
    de Klein, A., van Kessel, A. G., Grosveld, G., Bartram, C. R., Hagemeijer, A., Bootsma, D., Spurr, N. K., Heisterkamp, N., Groffen, J., and Stephenson, J. R., 1982, A cellular oncogene is translocated to the Philadelphia chromosome in the chronic myelogenous leukemia, Nature 300:765–767.PubMedCrossRefGoogle Scholar
  10. 10.
    Xu, Y., Richert, N. Ito, S., Merlino, G. T., and Pastan, I., 1984, Characterization of epidermal growth factor receptor gene expression in malignant and normal human cell lines, Proc. Natl. Acad. Sci. USA 81:7308–7312.PubMedCrossRefGoogle Scholar
  11. 11.
    Hendler, F. J., and Ozanne, B. W., 1984, Human squamous cell lung cancers express increased epidermal growth factor receptors, J. Clin. Invest. 74:647–651.PubMedCrossRefGoogle Scholar
  12. 12.
    Hunter, T. J., 1984, Oncogenes and proto-oncogenes: How do they differ? J. Natl. Cancer Inst. 73:773–786.PubMedGoogle Scholar
  13. 13.
    Shih, C., Padhy, L. C., Murray, M., and Weinberg, R. A., 1981, Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts, Nature 290:261–264.PubMedCrossRefGoogle Scholar
  14. 14.
    Schecter, A. L., Stern, D. F., Vaidyanathan, L., Decker, S. J., Drebin, J. A., Greene, M. I., and Weinberg, R. A., 1984, The neu oncogene: An erbB related gene encoding a 185,000-Mr tumor antigen, Nature 312:513–516.CrossRefGoogle Scholar
  15. 15.
    Coussens, L., Yang-Feng, T. L., Liao, Y., Chen, E., Gray, A., McGrath, J., Seeburg, P. H., Libermann, T. A., Schlessinger, J., Franke, U., Levinson, A., and Ullrich, A., 1985, Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene, Science 230:1132–1139.PubMedCrossRefGoogle Scholar
  16. 16.
    Yamamoto, T., Ikawa, S., Akiyama, T., Semba, K., Nomura, N., Miyajima, N., Saito, T., and Toyoshima, K., 1986, Similarity of protein encoded by the human c-erbB-2 gene to epidermal growth factor receptor, Nature 319:230–234.PubMedCrossRefGoogle Scholar
  17. 17.
    Akiyama, T., Sudo, C., Ogawara, H., Toyoshima, K., and Yamamoto, T., 1986, The product of the human c-erbB-2 gene: A 185-kilodalton glycoprotein with tyrosine kinase activity, Science 232:1644–1646.PubMedCrossRefGoogle Scholar
  18. 18.
    Bargmann, C., Hung, M. C., and Weinberg, R. A., 1986, Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185, Cell 45:649–657.PubMedCrossRefGoogle Scholar
  19. 19.
    Drebin, J. A., Link, V. C., Stern, D. F., Weinberg, R. A., and Greene, M. I., 1984, Immune responses against transforming gene associated antigens, in: Regulation of the Immune System (E. Sercarz, H. Cantor, and L. Chess, eds.), Liss, New York, pp. 919–928.Google Scholar
  20. 20.
    Drebin, J. A., Stern, D. F., Link, V. C., Weinberg, R. A., and Greene, M. I., 1984, Monoclonal antibodies identify a cell surface antigen associated with an activated cellular oncogene, Nature 312:545–548.PubMedCrossRefGoogle Scholar
  21. 21.
    Schreiner, G. F., and Unanue, E. R., 1977, Capping and the lymphocyte: Models for membrane reorganization, J. Immunol. 119:1549–1551.PubMedGoogle Scholar
  22. 22.
    Baumann, H., and Doyle, D., 1980, Metabolic fate of cell surface glycoproteins during immunoglobulin-induced internalization, Cell 21:897–907.PubMedCrossRefGoogle Scholar
  23. 23.
    Boyse, E. A., Stocken, E., and Old, L. J., 1967, Modification of the antigenic structure of the cell membrane by thymus-leukemia (TL) antibody, Proc. Natl. Acad. Sci. USA 58:954–959.PubMedCrossRefGoogle Scholar
  24. 24.
    Drebin, J. A., Link, V. C., Stern, D. F., Weinberg, R. A., and Green, M. I., 1985, Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies, Cell 41:695–706.CrossRefGoogle Scholar
  25. 25.
    Pollack, R., Chen, S., Powers, S., and Verderame, M., 1984, Transformation mechanisms at the cellular level, in: Advances in Viral Oncology ,Vol. 3 (G. Klein, ed.), Raven Press, New York, pp. 3–28.Google Scholar
  26. 26.
    Drebin, J. A., Link, V. C., Weinberg, R. A., and Greene, M. I., 1987, Inhibition of tumor growth by a monoclonal antibody reactive with an oncogene-encoded tumor antigen, Proc. Natl. Acad. Sci. USA (in press).Google Scholar
  27. 27.
    Downward, J., Yarden, Y., Mayes, E., Scrace, G., Totty, N., Stockwell, P., Ullrich, A., Schlessinger, J., and Waterfield, M. D., 1984, Close similarity of epidermal growth factor receptor and \-erbBoncogene protein sequences, Nature 307:521–527.PubMedCrossRefGoogle Scholar
  28. 28.
    Roussel, M. F., Rettenmier, C. W., Look, A. T., and Sherr, C. J., 1984, Cell surface expression of v-/ww-coded glycoproteins is required for transformation, Mol. Cell. Biol. 4:1999–2009.PubMedGoogle Scholar
  29. 29.
    Yokata, J., Yamamoto, T., Toyoshima, K., Terada, M., Sugimura, T., Battifora, H., and Cline, M. J., 1986 Amplification of c-erbB-2 oncogene in human adenocarcinomas in vivo, Lancet 1:765–767.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Jeffrey A. Drebin
    • 1
  • Victoria C. Link
    • 1
  • Mark I. Greene
    • 2
  1. 1.Department of PathologyHarvard Medical SchoolBostonUSA
  2. 2.Division of Immunology, Department of Pathology and Laboratory MedicineUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations