Mechanisms of Virus-Induced Alterations of Expression of Class I Genes and Their Role on Tumorigenesis

  • Daniel Meruelo


A number of years ago my collaborators and I(1) first documented the striking role that virus-induced alterations in H-2 (class I) antigen expression played in resistance to neoplasia. This fact has also been recently documented by numerous investigators.(2–6) Our early studies showed that resistance to RadLV-induced leukemia is mediated by a gene(s) in the H-2D region of the major murine histocompatibility complex (MHC).(7) These experiments indicated a role in disease resistance for changes in H-2 expression which occur immediately after virus inoculation and after tumorigenesis.(1,8) For example, elevated H-2D antigen expression occurs immediately after virus inoculation on thymocytes of resistant but not of susceptible mice.(1) Furthermore, an inverse relationship exists between expression of H2 and viral antigens.(1) After RadLV infection viral antigen expression is greater in susceptible animals, which show little if any changes in H-2 antigen expression, whereas H-2 antigen expression is maximal for virus-infected resistant mice which are subjected to rapid elimination of viral antigen-expressing cells.(1) Finally, H-2 antigens usually disappear from the surface of RadLV-transformed cells when overt leukemia develops.(1) Thus, resistance to the disease is associated with increased H-2 antigen expression, and the onset of leukemia is associated with disappearance of these antigens. (Some of these findings are diagrammed in Fig. 1.)


Antigen Expression Histocompatibility Antigen Susceptible Mouse Histocompatibility Gene Viral Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Meruelo, D., Nimelstein, S., Jones, P., Lieberman, M., and McDevitt, H. O., 1978, Increased synthesis and expression of H-2 antigens as a result of radiation leukemia virus infection: A possible mechanism for H-2 linked control of virus-induced neoplasia, J. Exp. Med. 147:470–479.PubMedCrossRefGoogle Scholar
  2. 2.
    Hui, K., Grosveld, H., and Festenstein, H., 1984, Rejection of transplantable AKR leukemia cells following MHC DNA-mediated cell transformation, Nature 311:750–752.PubMedCrossRefGoogle Scholar
  3. 3.
    Wallich, R., Bulbuc, N., Hammerling, G. J., Katzav, S., Segal, S., and Feldman, M., 1985, Abrogation of metastatic properties of tumor cell by de novo expression of H-2K antigens following H2 gene transfection, Nature 315:301–305.PubMedCrossRefGoogle Scholar
  4. 4.
    Schrier, P. I., Bernards, R., Vaessen, R. T. M. J., Houweling, A., and van der Erb, A. J., 1983, Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed cells, Nature 305:771–775.PubMedCrossRefGoogle Scholar
  5. 5.
    Eager, K. B., Williams, J., Breiding, D., Pan, S., Knowles, B., Appella, E., and Ricciardi, R. P., 1985, Expression of histocompatibility antigens, H-2K, -D, and -L is reduced in adenovirus-12-trans-formed mouse cells and is restored by interferon γ, Proc. Natl. Acad. Sci. USA 82:5525–5529.PubMedCrossRefGoogle Scholar
  6. 6.
    Mellow, G. H., Fohring, B., Doughert, J., Gallimor, P. H., and Raska, K., 1984, Tumorigenicity of adenovirus-transformed rat cells and expression of class I histocompatibility antigen, Virology 134:460–465.PubMedCrossRefGoogle Scholar
  7. 7.
    Meruelo, D., Lieberman, M., Ginzton, N., Deak, B., and McDevitt, H. O., 1977, Genetic control of radiation leukemia virus-induced tumorigenesis. I. Role of the murine major histocompatibility complex, H-2, J. Exp. Med. 146:1079–1088.PubMedCrossRefGoogle Scholar
  8. 8.
    Meruelo, D., 1979, A role for elevated H-2 antigen expression in resistance to RadLV-induced leukemogenesis: Enhancement of effective tumor surveillance by killer lymphocytes, J. Exp. Med. 149:898–909.PubMedCrossRefGoogle Scholar
  9. 9.
    Schmidt, W., and Festenstein, H., 1982, Resistance to cell-mediated cytotoxicity is correlated with reduction of H-2K gene products in AKR leukemia, Immunogenetics 16:257–264.PubMedCrossRefGoogle Scholar
  10. 10.
    De Baetselier, P., Katzav, S., Gorelik, E., Feldman, M., and Segal, S., 1980, Differential expression of H-2 gene products in tumor cells is associated with their metastogenic properties, Nature 288:179–181.PubMedCrossRefGoogle Scholar
  11. 11.
    Katzav, S., Taitakov, B., De Baetselier, P., Isakov, N., Feldman, M., and Segal, S., 1983, Role of MHC-encoded glycoproteins in tumor dissemination, Transplant. Proc. 15:162–170.Google Scholar
  12. 12.
    Rosentahal, A., Wright, S., Quade, K., Gallimore, P., Cedar, H., and Grosveld, F., 1985, Increased MHC H-2K gene transcription in cultured mouse embryo cells after adenovirus infection, Nature 315:579–581.CrossRefGoogle Scholar
  13. 13.
    Raska, K., Jr., and Gallimore, P. H., 1982, An inverse relation of the oncogenic potential of adenovirus-transformed cells and their sensitivity to killing by syngeneic natural killer cells, Virology 123:8–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Lewis, A. M., Jr., and Cook, J. L., 1985, A new role for DNA virus early proteins in viral carcinogenesis, Science 227:15–19.PubMedCrossRefGoogle Scholar
  15. 15.
    Herberman, R. B., and Holden, H. T., 1978, Natural cell-mediated immunity, Adv. Cancer Res. 27:305–377.PubMedCrossRefGoogle Scholar
  16. 16.
    Tanaka, K., Isselbacher, K. J., Khoury, G., and Jay, G., 1985, Reversals of oncogenesis by the expression of a major histocompatibility complex class I gene, Science 228:26–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Meruelo, D., Kornreich, R., Rossomando, A., Pampeno, C., Boral, A., Silver, J. L., Buxbaum, J., Weiss, E. H., Devlin, J. J., Mellor, A. L. Flavell, R. A., and Pellicer, A., 1985, Lack of class I H-2 antigens in cells transformed by radiation leukemia virus is associated with methylation and rearrangement of H-2 DNA, Proc. Natl. Acad. Sci. USA 83:4504–4508.CrossRefGoogle Scholar
  18. 18.
    Edidin, M., 1972, The tissue distribution and cellular location of transplantation antigens, in: Transplantation Antigens (B.D. Kahan and R.A. Reisfeld, eds.), Academic Press, New York, pp. 125–140.Google Scholar
  19. 19.
    Olsson, L., and Forchhamer, J., 1984, Induction of the metastatic phenotype in a mouse tumor by 5-azacytidine and characterization of an antigen associated with metastatic activity, Proc. Natl. Acad. Sci. USA 81:3389–3393.PubMedCrossRefGoogle Scholar
  20. 20.
    Olsson, L., 1985, Identification of a gene and its product associated with metastatic activity, Fed. Proc. Fed. Am. Soc. Exp. Biol. 44:1336.Google Scholar
  21. 21.
    Breathnach, R., and Chambon, P., 1981, Organization and expression of eukaryotic split genes coding for proteins, Annu. Rev. Biochem. 50:349–383.PubMedCrossRefGoogle Scholar
  22. 22.
    Dierks, P., Van Ooyen, A., Cochran, M. D., Dobkin, C., Reiser, J., and Weissman, C., 1983, Three regions upstream from the cap site are required for effective and accurate transcription of the rabbit ß-globin gene in mouse 3T6 cells, Cell 32:695–706.PubMedCrossRefGoogle Scholar
  23. 23.
    McKnight, S. L., and Kingsbury, R., 1982, Transcriptional control signals of a eukaryotic proteincoding gene, Science 217:316–325.PubMedCrossRefGoogle Scholar
  24. 24.
    Gluzman, Y., and Shenk, T. (eds.), 1983, Enhancers and Eukaryotic Gene Expression ,Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  25. 25.
    Banerji, J., Olsson, L., and Shafïner, W., 1983, A lymphocyte specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chains, Cell 33:729–740.PubMedCrossRefGoogle Scholar
  26. 26.
    Kimura, A., Israel, A., Lebaile, O., and Kourilsky, P., 1986, Detailed analysis of the mouse H-2Kb promoter: Enhancer-like sequences and their role in the regulation of class I gene expression, Cell 44:261–272.PubMedCrossRefGoogle Scholar
  27. 27.
    Goodenow, R. S., Vogel, J. M., and Linsk, R., 1985, Histocompatibility antigens on murine tumors, Science 230:777–783.PubMedCrossRefGoogle Scholar
  28. 28.
    Meruelo, D., Rossomando, A., Offer, M., Buxbaum, J., and Pellicer, A., 1983, Association of endogenous viral loci with genes encoding murine histocompatibility and lymphocyte differentiation antigens, Proc. Natl. Acad. Sci. USA 80:5032–5036.PubMedCrossRefGoogle Scholar
  29. 29.
    Rossomando, A., and Meruelo, D., 1986, Viral sequences are associated with many histocompatibility genes, Immunogenetics 23:233–245.PubMedCrossRefGoogle Scholar
  30. 30.
    Meruelo, D., Kornreich, R., Rossomando, A., Pampeno, C., Mellor, A. L., Weiss, E. H., Flavell, R. A., and Pellicer, A., 1984, Murine leukemia virus sequences are encoded in the murine major histocompatibility complex, Proc. Natl. Acad. Sci. USA 81:1804–1808.PubMedCrossRefGoogle Scholar
  31. 31.
    Pampeno, C., and Meruelo, D., 1986, Isolation of retroviral-like sequences from the TL locus of the C57BL/10 murine major histocompatibility complex, J. Virol. 58:296–306.PubMedGoogle Scholar
  32. 32.
    Meruelo, D., 1985, Retroviral sequences flanking histocompatibility genes alter their expression, function, and evolution: A hypothesis, in: Genetic Control of Host Resistance to Infection and Immunity (E. Skamene, ed.), Liss, New York, pp. 655–669.Google Scholar
  33. 33.
    Flaherty, L., DiBiase, K., Lynes, M. A., Seidman, J. B., Weinberger, O., and Rinchik, E. M., 1985, Characteristics of a Q subregion gene in the murine major histocompatibility complex, Proc. Natl. Acad. Sci. USA 82:1503–1507.PubMedCrossRefGoogle Scholar
  34. 34.
    Mellor, A. L., Weiss, E. H., Kress, M., Jay, G., and Flavell, R. A., 1984, A nonpolymorphic class I gene in the murine major histocompatibility complex, Cell 36:139–144.PubMedCrossRefGoogle Scholar
  35. 35.
    Blatt, C., Mileham, K., Haas, M., Nesbitt, M., Harper, M., and Simon, M., 1983, Chromosomal mapping of the mink cell focus-forming and xenotropic env gene family in the mouse, Proc. Natl. Acad. Sci. USA 80:6298–6302.PubMedCrossRefGoogle Scholar
  36. 36.
    Wejman, J., Taylor, B., Jenkins, N., and Copeland, N. G., 1984, Endogenous zenotropic murine leukemia virus related sequences map to chromosomal regions encoding mouse lymphocyte antigens, J. Virol. 50:237–249.PubMedGoogle Scholar
  37. 37.
    Jaenisch, R., 1980, Germ line and Mendelian transmission of exogenous type C viruses, in: Molecular Biology of RNA Tumor Viruses (J. R. Stephenson, ed.), Academic Press, New York, pp. 131– 162.Google Scholar
  38. 38.
    Lemay, G., and Jolicoeur, P., 1984, Rearrangement of a DNA sequence homologous to cell-virus junction fragment in several Moloney murine leukemia virus-induced rat thymomas, Proc. Natl. Acad. Sci. USA 81:38–42.PubMedCrossRefGoogle Scholar
  39. 39.
    Nusse, R., and Varmus, H. E., 1982, Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome, Cell 31:99–109.PubMedCrossRefGoogle Scholar
  40. 40.
    Nusse, R., van Ooyery, A., Cox, D., Fung, Y. K. T., and Varmus, H., 1984, Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15, Nature 307:131–136.PubMedCrossRefGoogle Scholar
  41. 41.
    Hayward, W. S., Neel, B. G., and Astrin, S., 1981, Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis, Nature 209:475–480.CrossRefGoogle Scholar
  42. 42.
    Jenkins, N. A. Copeland, M. G., Taylor, B. A., and Lee, B., 1981, Dilute(d) coat colour mutation of DBA/2J mice is associated with the site of integration of an ecotropic MuLV genome, Nature 283:370–374.CrossRefGoogle Scholar
  43. 43.
    Neel, B. G., Hayward, W. S., Robinson, H. L., Farey, J., and Astrin, S. M., 1981, Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: Oncogenesis by promoter insertion, Cell 23:323–344.PubMedCrossRefGoogle Scholar
  44. 44.
    Noori-Daloii, M., Swift, R. A., Kung, H. J., Crittender, L. B., and Witter, R. L., 1981, Specific integration of REV pro viruses in avian bursal lymphomas, Nature 294:574–576.PubMedCrossRefGoogle Scholar
  45. 45.
    Li, Y., Holland, C. A., Hartley, J. W., and Hopkins, N., 1984, Viral integration near c-myc in 10-20% of MCF 247-induced AKR lymphomas, Proc. Natl. Acad. Sci. USA 81:6808–6811.PubMedCrossRefGoogle Scholar
  46. 46.
    Tsichlis, P. N., Strauss, P. G., and Fu Hu, L., 1983, A common region for proviral DNA integration of MoMuLV-induced rat thymic lymphomas, Nature 302:445–449.PubMedCrossRefGoogle Scholar
  47. 47.
    Van der Putten, H., Quint, W., Verma, I. M., and Berns, A., 1982, Moloney murine leukemia virusinduced tumors: Recombinant proviruses in active chromatin regions, Nucleic Acids Res. 10:577–592.PubMedCrossRefGoogle Scholar
  48. 48.
    King, W., Patel, M. D., Lobel, L. I., Goff, S. P., and Nguyen-Huu, M. C., 1985, Insertion mutagenesis of embryonal carcinoma cells by retroviruses, Science 228:554–558.PubMedCrossRefGoogle Scholar
  49. 49.
    Bailey, D., 1966, Heritable histocompatibility changes: Lysogeny in mice, Transplantation 4:482–487.PubMedCrossRefGoogle Scholar
  50. 50.
    Melvold, R., W., and Kohn, H. I., 1975, Histocompatibility gene mutation rates: H-2 and non-H-2, Mutat. Res. 27:415–418.CrossRefGoogle Scholar
  51. 51.
    Pease, L., Schulze, D., Pfaffenback, G., and Nathenson, S., 1983, Spontaneous H-2 mutants provide evidence that a copy mechanism analgous to gene conversion generates polymorphism in the major histocompatibility complex, Proc. Natl. Acad. Sci. USA 80:242–246.PubMedCrossRefGoogle Scholar
  52. 52.
    Weiss, E., Golden, L., Zakut, R., Mellor, A., Fahrner, K., Kvist, S., and Flavell, R., 1983, The DNA sequence of the H-2Kb gene: Evidence for gene conversion as a mechanism for the generation of polymorphism in histocompatibility antigens, EMBO J. 2:453–462.PubMedGoogle Scholar
  53. 53.
    Atherton, S. S., Streilein, R. D., and Streilein, J. W., 1984, Lack of polymorphism for C-type retrovirus sequences in the Syrian hamster, in: Advances in Gene Technology: Human Genetic Disorders (F. S. Ahmad, J. Block, W. A., Schultz, D. Scott, and W. J. Whelan, eds.), ICSU Press, Cambridge, pp. 128–129.Google Scholar
  54. 54.
    Streilein, J. W., Duncan, W. R., and Homburger, F., 1980, Immunogenetic relationship among genetically defined inbred domestic Syrian hamster strain, Transplantation 30:358–361.PubMedCrossRefGoogle Scholar
  55. 55.
    Murphy, M. R., 1971, Natural history of Syrian golden-hamster: Reconnaissance expedition, Am. Zool. 11:632–635.Google Scholar
  56. 56.
    Schwartzberg, P., Colicelli, J., and Goff, S. P., 1984, Construction and analysis of deletion mutations in the pol gene of Moloney murine leukemia virus: A new viral function required for productive infection, Cell 37:1043–1052.PubMedCrossRefGoogle Scholar
  57. 57.
    Panganiba, A., and Temin, H. M., 1984, Sequences required for integration of spleen necrosis virus DNA, in: RNA Tumor Viruses (T. Hunter and S. Martin, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., p. 22.Google Scholar
  58. 58.
    Donehawer, L. A., and Varmus, H. E., 1984, A mutant murine leukemic virus with a single missense codon in pol is defective in a function affecting integration, Proc. Natl. Acad. Sci. USA 81:6461.CrossRefGoogle Scholar
  59. 59.
    Singh, K., Casey, M., Saragosti, S., and Botchan, M., 1985, Expression of enhanced RNA polymerase III transcripts encoded by the B2 repeats in simian virus 40-transformed mouse cells, Nature 314:553–556.PubMedCrossRefGoogle Scholar
  60. 60.
    Kramerov, D. A., Grigoryan, A. A., Ryskov, A. P., and Georgiev, G. P. 1979, Long double-stranded sequences (DSRNA-B) of nuclear pre-messenger RNA consist of a few highly abundant classes of sequences-Evidence from DNA cloning experiments, Nucleic Acids Res. 6:697–713.PubMedCrossRefGoogle Scholar
  61. 61.
    Jagadeeswaran, P., Forget, B. G., and Weissman, S. M., 1981, Short interspersed repetitive DNA elements in eukaryotes-Transposable DNA elements generated by reverse transcription of RNA Pol III transcripts, Cell 26:141–142.PubMedCrossRefGoogle Scholar
  62. 62.
    Krayev, A. S., Markusheva, T. V., Kramerov, D. A., Ryskov, A. P., Skryabin, K. G., Bayev, A. A. and Georgiev, G. P., 1982, Ubiquitous transposon-like repeats B1 and B2 of the mouse genome: B2 sequencing, Nucleic Acids Res. 10:7461–7475.PubMedCrossRefGoogle Scholar
  63. 63.
    Georgiev, G. P., Ilyin, Y. U., Chmeliauskaite, V. G., Ryskov, A. P., Kramerov, D. A., Skryabin, K. G., Krayev, A. S., Leukanidir, E. M., and Grigorkyan, M. S., 1981, Mobile dispersed genetic elements and other middle repetitive DNA sequences in the genomes of Drosophila and mouse-Transcription and biological significance, Cold Spring Harbor Symp. Quant. Biol. 45:641–654.PubMedGoogle Scholar
  64. 64.
    Deininger, P. L., Jolly, D. J., Rubin, C. M., Friedmann, T., and Schmid, C. W., 1981, Base sequence studies of 300 nucleotide renatured repeated human DNA clones, J. Mol. Biol. 151:17–33.PubMedCrossRefGoogle Scholar
  65. 65.
    Grimaldi, G., Queen, C., and Singer ,M. F., 1981, Interspersed repeated sequences in the Africangreen monkey genome that are homologous to the human Alu family, Nucleic Acids Res. 9:5553–5568.PubMedCrossRefGoogle Scholar
  66. 66.
    Krayev, A. S., Kramerov, D. A., Skryabin, K. G., Ryskov, A. P., Bagev, A. A., and Georgiev, G. P., 1980, The nucleotide sequence of the ubiquitous repetitive DNA sequence B1 complementary to the most abundant class of mouse fold-back RNA, Nucleic Acids Res. 8:1201–1215.PubMedCrossRefGoogle Scholar
  67. 67.
    Ryskov, A. P., Saunders, G. F., Farashyan, V. R., and Georgiev, G. P., 1973, Double-helical regions in nuclear precursors of messenger-RNA (pre-messenger RNA), Biochim. Biophys. Acta 312:152–164.PubMedGoogle Scholar
  68. 68.
    Haynes, S. R., Toomey, T. P., Leinwald, L., Andjelinek, W., 1981, The Chinese-hamster Alu-equivalent sequence-A conserved, highly repetitious, interspersed deoxyribonucleic acid sequence in mammals a structure suggestive of a transposable element, Mol. Cell. Biol. 1:573–583.PubMedGoogle Scholar
  69. 69.
    Stumph, W. E., Kristo, P., Tsai, M.-J., and O’Mally, W., 1981, A chicken middle-repetitive DNA sequence which shares homology with mammalian ubiquitous repeats, Nucleic Acids Res. 9:5383–5397.PubMedCrossRefGoogle Scholar
  70. 70.
    Lerner, M. R and Steitz, J. A., 1981, Snurps and scyrps, Cell 25:298–300.PubMedCrossRefGoogle Scholar
  71. 71.
    Davidson, E. H., and Bruther, R. J., 1979, Regulation of gene expression: Possible role of repetitive sequences, Science 204:1052–1059.PubMedCrossRefGoogle Scholar
  72. 72.
    Schon, E. A., Clealy, M. L., Haynes, J. R., and Lingel, J. B., 1981, Structure and evolution of goat γ-, ßc- and ßa-globin genes: Three developmentally regulated genes contain inserted elements, Cell 27:359–369.PubMedCrossRefGoogle Scholar
  73. 73.
    Singer, D. H., Lifshitz, R., Abelson, L., Nyirjisy, P., and Rudekoff, S., 1983, Specific association of repetitive DNA sequences with major histocompatibility genes, Mol. Cell. Biol. 3:903–913.PubMedGoogle Scholar
  74. 74.
    Lelanne, J. L., Transy, C., Guerain, S., Darche, S., Meulien, P., and Kourilsky, P., 1985, Expression of class I gene in the major histocompatibility complex: Identification of eight distinct mRNAs in DBA/2 mouse liver, Cell 41:469–478.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Daniel Meruelo
    • 1
  1. 1.Department of Pathology and Kaplan Cancer CenterNew York University Medical CenterNew YorkUSA

Personalised recommendations