Cell-to-Cell Communication in Salivary Glands

  • Robert Weingart

Abstract

Twenty-five years have passed since Burgen and Emmelin’s (1961) monograph, Physiology of the Salivary Glands, was published. At that time, it was not yet recognized that this tissue has a syncytial structure. Nineteen years later, Petersen’s (1980) new monograph, The Electrophysiology of Gland Cells, devoted an entire chapter to “Intercellular Communication.” Obviously, exciting discoveries were made in the interim concerning the nature and importance of connections between glandular cells. In the beginning, a report by Loewenstein and Kanno (1964) demonstrated that the cells of insect salivary glands are electrically coupled. Since then, salivary glands from Drosophila or Chironomus larvae have been an experimental model for exploring problems related to various aspects of intercellular communication. The advantages of studying insect salivary glands include the large cell size (diameter ~ 80–150 μm), and the arrangement of cells in a linear array. Salivary glands from animal species other than insects also have been shown to exhibit cell-to-cell coupling. However, such preparations seldom have been used presumably because of experimental difficulties arising from the small cell size (diameter ~ 15 μm), and the complex three-dimensional structure. The resulting work on salivary glands, mainly carried out by Loewenstein’s group, not only has contributed to the current understanding of cell-to-cell coupling, but also has initiated similar investigations performed with other multicellular tissues.

Keywords

Depression Angiotensin Cyanide Cytosol Cardiol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, W. K., and Uhrik, B., 1972, Membrane junctions between salivary gland cells of Chironomus thummi, Z. Zeilforsch. 127:116–126.CrossRefGoogle Scholar
  2. Berridge, M. J., 1980, Preliminary measurements of intracellular calcium in an insect salivary gland using a calcium-sensitive microelectrode, Cell Calcium 1:217–227.CrossRefGoogle Scholar
  3. Brink, P. R., and Dewey, M. M., 1981, Diffusion and mobility of substances inside cells, Techniques in Cellular Physiology P104:1–17.Google Scholar
  4. Burgen, A. S. V., and Emmelin, N. G., 1961, Physiology of the Salivary Glands ,Physiol. Soc. Monogr. Vol. 8, Arnold, London.Google Scholar
  5. Caveney, S., 1985, The role of gap junctions in development, Annu. Rev. Physiol. 47:319–335.PubMedCrossRefGoogle Scholar
  6. Délèze, J., and Loewenstein, W. R., 1976, Permeability of a cell junction during intracellular injection of divalent cations, J. Membr. Biol. 28:71–86.PubMedCrossRefGoogle Scholar
  7. Dunn, J., and Revel, J.-P., 1984, Association of gap junctions with endoplasmic reticulum in rat parotid glands, Cell Tissue Res. 238:589–594.PubMedCrossRefGoogle Scholar
  8. Engelmann, T. W., 1877, Vergleichende Untersuchungen zur Lehre von der Muskel-und Nervenelektricität, Pfluegers Arch. 11:465–480.Google Scholar
  9. Faxén, H., 1922, Die Bewegung einer starren Kugel längs der Achse eines mit zäher Flüssigkeit gefüllten Rohres, Ark. Mat. Astron. Fys. 17:1–28.Google Scholar
  10. Gallacher, D. V., and Petersen, O. H., 1980, Electrophysiology of mouse parotid acini: Effects of electrical field stimulation and iontophoresis of neurotransmitters, J. Physiol. (London) 305:43– 57.Google Scholar
  11. Ginsborg, B. L., House, C. R., and Silinsky, E. M., 1974, Conductance changes associated with the secretory potential in the cockroach salivary gland, J. Physiol. (London) 236:723–731.Google Scholar
  12. Hadley, R. D., Murphy, A. D., and Kater, S. B., 1980, Ionic basis of resting and action potentials in salivary gland acinar cells of the snail Helisoma, J. Exp. Biol. 84:213–225.PubMedGoogle Scholar
  13. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. 391:85–100.CrossRefGoogle Scholar
  14. Hammer, M. G., and Sheridan, J. D., 1978, Electrical coupling and dye transfer between acinar cells in rat salivary glands, J. Physiol. (London) 275:495–505.Google Scholar
  15. Hax, W. M. A., van Venrooij, G. E. P. M., and Vossenberg, J. B. J., 1974, Cell communication: A cyclic-AMP mediated phenomenon, J. Membr. Biol. 19:253–266.PubMedCrossRefGoogle Scholar
  16. House, C. R., 1974, Water Transport in Cells and Tissues ,Physiol. Soc. Monogr. Vol. 24, Arnold, London.Google Scholar
  17. House, C. R., 1975, Intracellular recording of secretory potentials in a ’mixed’ salivary gland, Experientia 31:904–906.PubMedCrossRefGoogle Scholar
  18. Imai, Y., 1965, Studies on the secretory mechanism of the submaxillary gland of dog. Part 1. Electrophysiological studies with microelectrodes, J. Physiol. Soc. Jpn. 27:304–312.Google Scholar
  19. Iwatsuki, N., and Petersen, O. H., 1981, Dissociation between stimulant-evoked acinar membrane resistance change and amylase secretion in the mouse parotid gland, J. Physiol. (London) 314:79–84.Google Scholar
  20. Jack, J. J. B., Noble, D. and Tsien, R. W., 1975, Electric Current Flow in Excitable Cells ,Clarendon Press, Oxford.Google Scholar
  21. Kagayama, M., and Nishiyama, A., 1974, Membrane potential and input resistance in acinar cells from cat and rabbit submaxillary glands in vivo: Effects of autonomic nerve stimulation, J. Physiol (London) 242:157–172.Google Scholar
  22. Kanno, Y., and Loewenstein, W. R., 1966, Cell-to-cell passage of large molecules, Nature 212:629–630.PubMedCrossRefGoogle Scholar
  23. Kater, S. B., and Galvin, N. J., 1978, Physiological and morphological evidence for coupling in mouse salivary gland acinar cells, J. Cell Biol. 79:20–26.PubMedCrossRefGoogle Scholar
  24. Kater, S. B., Rued, J. R., and Murphy, A. D., 1978, Propagation of action potentials through electrotonic junctions in the salivary glands of the pulmonate molluscs, Helisoma trivolvis, J. Exp. Biol. 72:77–90.Google Scholar
  25. Kislov, A. N., and Veprintsev, B. N., 1971, Electric characteristics of the cellular and nuclear membranes of the salivary gland cells of Drosophila funebris larvae, Comp. Biochem. Physiol. 39A:521–529.CrossRefGoogle Scholar
  26. Klevets, M. J., and Shuba, M. F., 1974, Electrical characteristics of plasma membranes from salivary gland cells of Helix pomatia [in Ukrainian], Fiziol. Zh. SSSR 20:540–542.Google Scholar
  27. Kloetzel, J. A., and Laufer, H., 1969, A fine-structure analysis of larval salivary gland function in Chironomus thummi, J. Ultrastruct. Res. 29:15–36.PubMedCrossRefGoogle Scholar
  28. Loewenstein, W. R., 1975, Permeable junctions, Cold Spring Harbor Symp. Quant. Biol. 40:49–63.Google Scholar
  29. Loewenstein, W. R., 1981, Junctional intercellular communication: The cell-to-cell membrane channel, Physiol. Rev. 61:829–913.PubMedGoogle Scholar
  30. Loewenstein, W. R., and Kanno, Y., 1964, Studies on an epithelial (gland) cell junction. I. Modifications of surface membrane permeability, J. Cell Biol. 22:565–586.PubMedCrossRefGoogle Scholar
  31. Loewenstein, W. R., Socolar, S. J., Higashino, S., Kanno, Y., and Davidson, N., 1965, Intercellular communication: Renal, urinary bladder, sensory, and salivary gland cells, Science 149:295–298.PubMedCrossRefGoogle Scholar
  32. Loewenstein, W. R., Nakas, M., and Socolar, S. J., 1967, Junctional membrane uncoupling: Permeability transformations at a cell membrane junction, J. Gen. Physiol. 50:1865–1891.PubMedCrossRefGoogle Scholar
  33. Lundberg, A., 1957, The mechanism of establishment of secretory potentials in sublingual gland cells, Acta Physiol. Scand. 40:35–58.PubMedCrossRefGoogle Scholar
  34. Mangos, J. A., 1979, Morphological and functional characterization of isolated human parotid acinar cells, J. Dent. Res. 58:2028–2035.PubMedCrossRefGoogle Scholar
  35. Maxwell, D. J., 1981, The presence of gap junctions in the septate desmosomes of the salivary apparatus of the cockroach Nauphoeta cinerea, J. Exp. Biol. 94:341–344.Google Scholar
  36. Meech, R., 1981, Microinjection, Techniques in Cellular Physiology P109:1–16.Google Scholar
  37. Metzger, P., and Weingart, R., 1984, Electric current flow in a two-cell preparation from Chironomus salivary glands, J. Physiol. (London) 346:599–619.Google Scholar
  38. Nakas, M. S., Higashino, S., and Loewenstein, W. R., 1966, Uncoupling of an epithelial cell membrane junction by calcium-ion removal, Science 151:89–91.PubMedCrossRefGoogle Scholar
  39. Nishiyama, A., and Kagayama, M., 1973, Biphasic secretory potentials in cat and rabbit submaxillary glands, Experientia 29:161–163.PubMedCrossRefGoogle Scholar
  40. Nishiyama, A., and Petersen, O. H., 1974, Membrane potential and resistance measurement in acinar cells from salivary glands in vitro: Effect of acetylcholine, J. Physiol. (London) 242:173–188.Google Scholar
  41. Obaid, A. L., Socolar, S. J., and Rose, B., 1983, Cell-to-cell channels with two independently regulated gates in series: Analysis of junctional conductance modulation by membrane potential, calcium, and pH, J. Membr. Biol. 73:69–89.PubMedCrossRefGoogle Scholar
  42. Oliveira-Castro, G. M., and Loewenstein, W. R., 1971, Junctional membrane permeability: Effects of divalent cations, J. Membr. Biol. 5:51–77.CrossRefGoogle Scholar
  43. Palmer, L. G., and Civan, M. M., 1977, Distribution of Na+, K+ and Cl-between nucleus and cytoplasm in Chironomus salivary gland cells, J. Membr. Biol. 33:41–61.PubMedCrossRefGoogle Scholar
  44. Pappenheimer, J. R., 1953, Passage of molecules through capillary walls, Physiol. Rev. 33:387–423.PubMedGoogle Scholar
  45. Peracchia, C., 1980, Structural correlates of gap junction permeation, Int. Rev. Cytol. 66:81–146.PubMedCrossRefGoogle Scholar
  46. Petersen, O. H., 1976, Electrophysiology of mammalian gland cells, Physiol. Rev. 56:535–577.PubMedGoogle Scholar
  47. Petersen, O. H., 1980, The Electrophysiology of Gland Cells ,Physiol. Soc. Monogr. Vol. 36, Academic Press, New York.Google Scholar
  48. Politoff, A. L., Socolar, S. J., and Loewenstein, W. R., 1967, Metabolism and the permeability of cell membrane junctions, Biochim. Biophys. Acta 135:791–793.PubMedCrossRefGoogle Scholar
  49. Politoff, A. L., Socolar, S. J., and Loewenstein, W. R., 1969, Permeability of a cell membrane junction: Dependence on energy metabolism, J. Gen. Physiol. 53:489–515.CrossRefGoogle Scholar
  50. Quissell, D. O., and Redman, R. S., 1979, Functional characteristics of dispersed rat submandibular cells, Proc. Natl. Acad. Sci. USA 76:2789–2793.PubMedCrossRefGoogle Scholar
  51. Rose, B., 1970, Junctional membrane permeability: Restoration by repolarizing current, Science 169:607–609.PubMedCrossRefGoogle Scholar
  52. Rose, B., 1971, Intercellular communication and some structural aspects of membrane junctions in a simple cell system, J. Membr. Biol. 5:1–19.CrossRefGoogle Scholar
  53. Rose, B., and Loewenstein, W. R., 1971, Junctional membrane permeability: Depression by substitution of Li for extracellular Na, and by long-term lack of Ca and Mg; restoration by cell repolarization, J. Membr. Biol. 5:20–50.CrossRefGoogle Scholar
  54. Rose, B., and Loewenstein, W. R., 1975a, Calcium ion distribution in cytoplasm visualized by aequorin: Diffusion in cytosol restricted by energized sequestering, Science 190:1204–1206.PubMedCrossRefGoogle Scholar
  55. Rose, B., and Loewenstein, W. R., 1975b, Permeability of cell junction depends on local cytoplasmic calcium activity, Nature 254:250–252.PubMedCrossRefGoogle Scholar
  56. Rose, B., and Loewenstein, W. R., 1976, Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration, J. Membr. Biol. 28:87–119.PubMedCrossRefGoogle Scholar
  57. Rose, B., and Rick, R., 1978, Intracellular pH, intracellular free Ca, and junctional cell-cell coupling, J. Membr. Biol. 44:377–415.PubMedCrossRefGoogle Scholar
  58. Rose, B., Simpson, I., and Loewenstein, W. R., 1977, Calcium ion produces graded changes in permeability of membrane channels in cell junction, Nature 267:625–627.PubMedCrossRefGoogle Scholar
  59. Rose, B., Simpson, I., and Loewenstein, W. R., 1980, The cell-to-cell membrane channel: Permeability and its regulation, in: Advances in Chemistry. Bioelectrochemistry: Ions, Surface Membranes ,Vol. 188 (M. Blank, ed.), pp. 391–408, American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
  60. Ruano-Arroyo, G., Gerstenblith, G., and Lakatta, E. G., 1984, Calcium paradox in the heart is modulated by cell sodium during the calcium-free period, J. Mol. Cell. Cardiol. 16:783–793.PubMedCrossRefGoogle Scholar
  61. Schwarzmann, G., Wiegandt, H., Rose, B., Zimmerman, A. L., Ben-Haim, D., and Loewenstein, W. R., 1981, Diameter of the cell-to-cell junctional channels as probed with neutral molecules, Science 213:551–553.PubMedCrossRefGoogle Scholar
  62. Sheridan, J. D., and Atkinson, M. M., 1985, Physiological roles of permeable junctions: Some possibilities, Annu. Rev. Physiol. 47:337–353.PubMedCrossRefGoogle Scholar
  63. Shimono, M., Yamamura, T., and Fumagalli, G., 1980, Intercellular junctions in salivary glands: Freeze fracture and tracer studies of normal rat sublingual gland, J. Ultrastruct. Res. 72:286–299.PubMedCrossRefGoogle Scholar
  64. Simpson, I., Rose, B., and Loewenstein, W. R., 1977, Size limit of molecules permeating the junctional membrane channels, Science 195:294–296.PubMedCrossRefGoogle Scholar
  65. Socolar, S. J., and Loewenstein, W. R., 1979, Methods for studying transmission through permeable cell-to-cell junctions, in: Methods in Membrane Biology ,Vol. 10 (E. D. Korn, ed.), pp. 123– 179, Plenum Press, New York.Google Scholar
  66. Socolar, S. J., and Politoff, A. L., 1971, Uncoupling cell junctions of a glandular epithelium by depolarizing current, Science 172:492–494.PubMedCrossRefGoogle Scholar
  67. Spray, D. C., and Bennett, M. V. L., 1985, Physiology and pharmacology of gap junctions, Annu. Rev. Physiol. 47:281–303.PubMedCrossRefGoogle Scholar
  68. Spray, D. C., Harris, A. L., and Bennett, M. V. L., 1981, Equilibrium properties of a voltage-dependent junctional conductance, J. Gen. Physiol. 77:77–93.PubMedCrossRefGoogle Scholar
  69. Stewart, W. W., 1978, Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer, Cell 14:741–759.PubMedCrossRefGoogle Scholar
  70. Sulakhe, P. V., and St. Louis, P. J., 1980, Passive and active calcium fluxes across plasma membranes, Prog. Biophys. Mol. Biol. 35:135–195.PubMedCrossRefGoogle Scholar
  71. van Venrooij, G. E. P. M., Hax, W. M. A., van Dantzig, G. F., Prijs, V., and Denier van der Gon, J. J., 1974, Model approaches for the evaluation of electrical cell coupling in the salivary gland of the larva of Drosophila hydei: The influence of lysolecithin on the electrical coupling, J. Membr. Biol. 19:229–252.PubMedCrossRefGoogle Scholar
  72. van Venrooij, G. E. P. M., Hax, W. M. A., Schouten, V. J. A., Denier van der Gon, J. J., and van der Vorst, H. A., 1975, Absence of cell communication for fluorescein and dansylated amino acids in an electrotonic coupled cell system, Biochim. Biophys. Acta 394:620–632.PubMedCrossRefGoogle Scholar
  73. Vozhkova, V. P., Kovalev, S. A., Mittelman, L. A., and Shilianskaia, E. N., 1970, Changes in the conductivity of intercellular contacts in the process of cell differentiation in the salivary gland of the Drosophila virilis larvae at the 3rd stage of development [in Russian], Tsitologiya 12:1108– 1115.Google Scholar
  74. Weidmann, S., 1952, The electrical constants of Purkinje fibres, J. Physiol. (London) 118:348–360.Google Scholar
  75. Weidmann, S., 1966, The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle, J. Physiol (London) 187:323–342.Google Scholar
  76. Wiener, J., Spiro, D., and Loewenstein, W. R., 1964, Studies on an epithelial (gland) cell junction. II. Surface structure, J. Cell Biol. 22:587–598.PubMedCrossRefGoogle Scholar
  77. Weingart, R., 1974, The permeability to tetraethylammonium ions of the surface membrane and the intercalcated disks of sheep and calf myocardium, J. Physiol. (London) 240:741–762.Google Scholar
  78. Zimmerman, A. L., and Rose, B., 1985, Permeability properties of cell-to-cell channels: Kinetics of fluorescent tracer diffusion through a cell junction, J. Membr. Biol. 84:269–283.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Robert Weingart
    • 1
  1. 1.Department of PhysiologyUniversity of BerneBerneSwitzerland

Personalised recommendations