Modulation of Junctional Permeability

  • Walmor C. De Mello

Abstract

Cell-to-cell coupling through low-resistance junctions represents a very old mechanism of intercellular communication. In sponges and medusae, for instance, without nervous tissue, the epithelia receive external stimuli and convert them into electrical pulses that are conducted in all directions through low-resistance junctions (Mackie, 1964).

Keywords

Ischemia Retina Acidity Proline Caffeine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asada, Y., and Bennett, M. V. L., 1971, Experimental alteration of coupling resistance at an electrotonic synapse, J. Cell Biol. 49:159–172.PubMedGoogle Scholar
  2. Baker, P. F., Blaustein, M. P., Hodgkin, A. L., and Steinhardt, R. A., 1969, The influence of calcium on sodium efflux in squid axons, J. Physiol. (London) 200:431–458.Google Scholar
  3. Barr, L., Dewey, M. M., and Berger, W., 1965, Propagation of action potentials and the nexus in cardiac muscle, J. Gen. Physiol. 48:797–823.PubMedGoogle Scholar
  4. Baux, G., Simmoneau, M., Tauc, L., and Segundo, J. P., 1978, Uncoupling of electrotonic synapses by calcium, Proc. Natl. Acad. Sci. USA 75:4577–4581.PubMedGoogle Scholar
  5. Bennett, M. V. L., 1973, Function of electrotonic junctions in embryonic and adult tissues, Fed. Proc. 32:65–75.PubMedGoogle Scholar
  6. Bennett, M. V. L., and Goodenough, D. A., 1978, Gap junctions, electrotonic coupling and intercellular communication, Neurosci. Res. Program Bull. 16:373–486.Google Scholar
  7. Bennett, M. V. L., Pappas, G. D., Aljure, E., and Nakajima, Y., 1967, Physiology and ultrastructure of electrotonic junctions. Spinal and medullary electromotor nuclei in mormyrid fish, J. Neurophysiol. 30:180–208.PubMedGoogle Scholar
  8. Bennett, M. V. L., Brown, J. E., Harris, A. L., and Spray, D. C., 1978a, Electrotonic junctions between Fundulus blastomeres: Reversible block by low intracellular pH, Biol. Bull. 155:442.Google Scholar
  9. Bennett, M. V. L., Spira, M. E., and Spray, D. C., 1978b, Permeability of gap junctions between embryonic cells of Fundulus: A reevaluation, Dev. Biol. 65:114–125.PubMedGoogle Scholar
  10. Brink, P. R., Verselis, V., and Barr, L., 1984, Solvent solute interactions within the nexal membrane, Biophys. J. 45:121–124.PubMedGoogle Scholar
  11. Clapham, D. E., Schrier, A., and DeHaan, R. L., 1980, Junctional resistance and action potential delay between embryonic cell aggregates, J. Gen. Physiol. 75:633–654.PubMedGoogle Scholar
  12. Cox, R. P., Krauss, M. J., Balis, M. E., and Daucis, J., 1970, Evidence for transfer of enzyme product as a basis of metabolic cooperation between tissue culture fibroblasts of Lesch-Nyhan disease and normal cells, Proc. Nad. Acad. Sci. USA 67:1573.Google Scholar
  13. De Felice, L. J., and Challice, C. E., 1969, Anatomical and ultrastructural study of the electrophysiological atrioventricular node of the rabbit, Circ. Res. 24:457–474.Google Scholar
  14. del Castillo, J., De Mello, W. C, and Morales, T., 1964, Inhibitory action of γ-aminobutyric acid (GABA) on Ascaris muscle, Experientia 20:1–15.Google Scholar
  15. Délèze, J., 1965, Calcium ions and the healing-over of heart fibers, in: Electrophysiology of the Heart (B. Taccardi and G. Marchetti, eds.), pp. 147–148, Pergamon Press, Elmsford, N.Y.Google Scholar
  16. De Mello, W. C., 1971, The sealing process in heart and other muscle fibers, in: Research in Physiology (F. F. Kao, K. Koisumi, and M. Vassalle, eds.), pp. 275–288, Aulo Gaggi Pub, Bologna.Google Scholar
  17. De Mello, W. C., 1972, The healing-over process in cardiac and other muscle fibers, in: Electrical Phenomena in the Heart (W. C. De Mello, ed.), pp. 323–351, Academic Press, New York.Google Scholar
  18. De Mello, W. C., 1973, Membrane sealing in frog skeletal-muscle fibres, Proc. Natl Acad. Sci. USA 70:982–984.PubMedGoogle Scholar
  19. De Mello, W. C., 1974, Electrical uncoupling in heart fibers produced by intracellular injection of Na or Ca, Fed. Proc. 17:3.Google Scholar
  20. De Mello, W. C., 1975, Effect of intracellular injection of calcium and strontium on cell communication in heart, J. Physiol. (London) 250:231–245.Google Scholar
  21. De Mello, W. C., 1976, Influence of the sodium pump on intercellular communication in heart fibres: Effect of intracellular injection of sodium ion on electrical coupling, J. Physiol. (London) 263:171–197.Google Scholar
  22. De Mello, W. C., 1977, Passive electrical properties of the atrioventricular node, Pfluegers Arch. 371:135–139.Google Scholar
  23. De Mello, W. C., 1979a, Effect of 2–4 dinitrophenol on intercellular communication in mammalian cardiac fibres, Pfluegers Arch. 380:267–276.Google Scholar
  24. De Mello, W. C., 1979b, Effect of intracellular injection of La3+ and Mn2+ on electrical coupling of heart cells, Cell Biol. Int. Rep. 3:113–119.PubMedGoogle Scholar
  25. De Mello, W. C., 1980a, Influence of intracellular injection of H+ on the electrical coupling in cardiac Purkinje fibres, Cell Biol. Int. Rep. 4:51–57.PubMedGoogle Scholar
  26. De Mello, W. C., 1980b, Intercellular communication and junctional permeability, in: Membrane Structure and Function ,Vol. 3 (E. E. Bittar, ed.), pp. 128–164, Wiley, New York.Google Scholar
  27. De Mello, W. C., 1982, Cell-to-cell communication in heart and other tissues, Prog. Biophys. Mol. Biol. 39:147–182.PubMedGoogle Scholar
  28. De Mello, W. C., 1983a, The role of cAMP and Ca on the modulation of junctional conductance: An integrated hypothesis, Cell Biol. Int. Rep. 7:1033–1040.PubMedGoogle Scholar
  29. De Mello, W. C., 1983b, The influence of pH on the healing-over of mammalian cardiac muscle, J. Physiol. (London) 339:299–307.Google Scholar
  30. De Mello, W. C., 1983c, Modulation of functional permeability in cardiac fibers, in: Myocardial Injury (J. J. Spitzer, ed.), pp. 37–59, Plenum Publishing Co., N.Y.Google Scholar
  31. De Mello, W. C., 1984a, Effect of intracellular injection of cAMP on the electrical coupling of mammalian cardiac cells, Biochem. Biophys. Res. Commun. 119:1001–1007.PubMedGoogle Scholar
  32. De Mello, W. C., 1984b, Modulation of junctional permeability, Fed. Proc. 43:2692–2696.PubMedGoogle Scholar
  33. De Mello, W. C., 1985, Ca-blocking agents promote healing-over in cardiac muscle, Physiologist 28:4.Google Scholar
  34. De Mello, W. C., 1986a, Increased spread of electrotonic potentials during diastolic depolarization in cardiac muscle, J. Mol. Cell. Cardiol. 18:23–29.PubMedGoogle Scholar
  35. De Mello, W. C., 1986b, Healing-over process in heart; interaction between Ca and protons, Biophys. J. 49:339a.Google Scholar
  36. De Mello, W. C., 1986c, Interaction of cyclic AMP and Ca in the control of electrical coupling in heart fibers, Biochim. Biophys. Acta. 888:91–99.PubMedGoogle Scholar
  37. De Mello, W. C., and Maldonado, H., 1985, Synaptic inhibition and cell communication; impairment of cell-to-cell coupling produced by γ-aminobutyric acid (GABA) in the somatic musculature of Ascaris lumbricoides, Cell Biol. Int. Rep. 9:803–813.PubMedGoogle Scholar
  38. De Mello, W. C., and Motta, G., 1969, Temperature and myocardial healing-over, Fed. Proc. 28:2.Google Scholar
  39. De Mello, W. C., Motta, G., and Chapeau, M., 1969, A study on the healing-over of myocardial cells of toads, Circ. Res. 24:475–487.PubMedGoogle Scholar
  40. De Mello, W. C., Gonzalez Castillo, M., and van Loon, P., 1983, Intercellular diffusion of Lucifer Yellow CH in mammalian cardiac fibers, J. Mol. Cell. Cardiol. 15:637–643.PubMedGoogle Scholar
  41. De Meilo, W. C., van Loon, P., and Vizcarra, N., 1985, Increased cell-to-cell diffusion of Lucifer Yellow CH produced by dB-cAMP in heart fibers, Biophys. J. 47:505a.Google Scholar
  42. Dreifuss, J. J., Girardier, L., and Forsmann, W. G., 1966, Etude de la propagation de l’excitation dans le ventricule de rat au moyen de solutions hypertoniques, Pfluegers Arch. 292:13–33.Google Scholar
  43. Engelmann, T. W., 1877, Vergleichende Untersuchungen zur Lehre von der Muskel-und Nervenelektricitat, Pfluegers Arch. 15:116–148.Google Scholar
  44. Epstein, M. L., and Gilula, N. B., 1977, A study of communication specificity between cells in culture, J. Cell Biol. 75:769–787.PubMedGoogle Scholar
  45. Estapé, E., and De Mello, W. C., 1982, Effect of theophylline on the spread of electrotonic activity in heart, Fed. Proc. 41:1505Google Scholar
  46. Estapé, E., and De Mello, W. C., 1983, Cyclic nucleotides and calcium: Their role in the control of cell communication in the heart, Cell Biol. Int. Rep. 7:91–97.Google Scholar
  47. Falk, G., and Fatt, P., 1964, Linear electrical properties of striated muscle fibres observed with intracellular electrodes, Proc. R. Soc. (London) Ser. B 160:69–123.Google Scholar
  48. Fatt, P., and Katz, B., 1951, An analysis of the end-plate potential recorded with an intracellular microelectrode, J. Physiol. (London) 115:320–370.Google Scholar
  49. Fiagg-Newton, J. L., Dahl, G., and Loewenstein, W. R., 1981, Cell junction and cyclic AMP. I. Upregulation of junctional membrane permeability and junctional membrane particles by administration of cyclic nucleotide or phosphodiesterase inhibitor, J. Membr. Biol. 63:105–121.Google Scholar
  50. Fujisawa, H., Morioka, H., Watanabe, H., and Nakamura, H., 1976, A decay of gap junction in association with cell differentiation of neural retina in chick embryonic development, J. Cell Sci. 22:585–596.PubMedGoogle Scholar
  51. Fujimoto, W. Y., Subak-Sharpe, J. H., and Seegmiller, J. E., 1971, Hypoxanthine-guanine phosphoribosytransferase deficiency: Chemical agents selective for mutant or normal cultured fibroblasts in mixed and heterozygote cultures, Proc. Natl. Acad. Sci. USA 68:1516–1518.PubMedGoogle Scholar
  52. Furshpan, E. J., and Potter, D. D., 1959, Transmission at the giant motor synapses of the crayfish, J. Physiol. (London) 245:289–325.Google Scholar
  53. Griepp, E. B., and Bernfield, M. R., 1975, Acquisition of ionic coupling in beating embryonic myocardial cells, Circulation 52(Suppl. 2):54.Google Scholar
  54. Hax, W. M. A., van Venrooij, G. E. P. M., and Vossenberg, J. B. J., 1974, Cell communication: A cyclic-AMP mediated phenomenon, J. Membr. Biol. 19:253–266.PubMedGoogle Scholar
  55. Heilbrunn, L. V. (ed.), 1956, Dynamics of Living Protoplasm ,Academic Press, New York.Google Scholar
  56. Hertzberg, E., 1985, Antibody probes in the study of gap junctional communication, Annu. Rev. Physiol. 47:305–318.PubMedGoogle Scholar
  57. Hertzberg, E., Spray, D. C., and Bennett, M. V. L., 1984, An antibody to gap junctions blocks gap junctional conductance, J. Cell Biol. 99:343a.Google Scholar
  58. Hoffman, B. F., and Cranefield, P., 1960, Electrophysiology of the Heart ,McGraw-Hill, New York.Google Scholar
  59. Hutter, O. F., 1957, Mode of action of autonomic transmitters on the heart, Br. Med. Bull. 13:176– 180.PubMedGoogle Scholar
  60. Ikeda, N., Toyama, J., Shimizu, T., Kodama, I., and Yamada, K., 1980, The role of electrical uncoupling in the genesis of atrioventricular conduction disturbance, J. Mol. Cell. Cardiol. 12:809–816.PubMedGoogle Scholar
  61. Imanaga, I., 1974, Cell-to-cell diffusion of Procion Yellow in sheep and calf Purkinje fibres, J. Membr. Biol. 16:381–388.PubMedGoogle Scholar
  62. James, T. N., and Scherf, L., 1968, Ultrastructure of the atrioventricular node, Circulation 37:1049–1070.PubMedGoogle Scholar
  63. Jennings, R. B., and Reimer, K. A., 1981, Lethal myocardial ischemic injury, Am. J. Pathol. 102:241–255.PubMedGoogle Scholar
  64. Jennings, R. B., and Steenbergen, C., 1985, Nucleotide metabolism and cellular damage in myocardial ischemia, Annu. Rev. Physiol. 47:727–749.PubMedGoogle Scholar
  65. Johnson, R. G., and Sheridan, J. D., 1971, Junctions between cancer cells in culture: Ultrastructure and permeability, Science 174:717–719.PubMedGoogle Scholar
  66. Johnson, R. G., Hammer, J. D., Sheridan, J. J. D., and Revel, J.-P., 1974, Gap junction formation between reaggregated Novikoff hepatoma cells, Proc. Natl. Acad. Sci. USA 71:4536–4540.PubMedGoogle Scholar
  67. Kamiyama, A., and Matsuda, K., 1966, Electrophysiological properties of the canine ventricular fiber, Jp2. J. Physiol. 16:407–420.Google Scholar
  68. Kanno, Y., and Loewenstein, W. R., 1966, Cell-to-cell passage of large molecules, Nature 212:629–630.PubMedGoogle Scholar
  69. Kushmerick, M. J., and Podolsky, R. J., 1969, Ionic mobility in muscle cells, Science 166:1297– 1298.PubMedGoogle Scholar
  70. Lewis, T., 1925, Mechanism and Graphic Registration of the Heart Beat ,Shaw, London.Google Scholar
  71. Llinas, R., 1975, Electrical synaptic transmission in the mammalian central nervous system, in: Perspectives in Neurobiology (M. Santini, ed.), pp. 379–386, Raven Press, New York.Google Scholar
  72. Loewenstein, W. R., 1966, Permeability of membrane functions, Ann. N.Y. Acad. Sci. 137:441– 472.PubMedGoogle Scholar
  73. Mackie, G. O., 1964, Analysis of locomotion in a siphonophore colony, Proc. R. Soc. London Ser. B 159:366–391.Google Scholar
  74. Maekawa, M., Nohara, Y., Kawamura, K., and Hayashi, K., 1967, Electron-microscope study of the conduction system in mammalian hearts, in: Electrophysiology and Ultrastructure of the Heart (T. Sano, V. Mizuhira, and K. Matsuda, eds.), pp. 41–54, Grune & Stratton, New York.Google Scholar
  75. Meyer, D. J., and Revel, J.-P., 1981, CO2 does not uncouple hepatocytes in rat liver, Biophys. J. 30:105A.Google Scholar
  76. Mines, G. R., 1913, On dynamic equilibrium in the heart, J. Physiol. (London) 45:350–383.Google Scholar
  77. Neely, J. R., Whitmer, J. T., and Robetto, M. J., 1975, Effect of coronary flow on glycolytic efflux and intracellular pH in isolated rat hearts, Circ. Res. 37:733–741.PubMedGoogle Scholar
  78. Nichols, J. G., and Purves, D., 1972, A comparison of chemical and electrical synaptic transmission between single sensory cells and a motoneurone in the central nervous system of the leech, J. Physiol. (London) 225:637–656.Google Scholar
  79. Nishiye, H., 1977, The mechanism of Ca2+ action on the healing-over process in mammalian cardiac muscles: A kinetic analysis, Jpn. J. Physiol. 27:451–466.PubMedGoogle Scholar
  80. Noble, D., 1962, The voltage dependence of the cardiac membrane conductance, Biophys. J. 2:381–393.PubMedGoogle Scholar
  81. Obaid, A. L., Socolar, S. J., and Rose, B., 1983, Cell-to-cell channels with two independent regulated gates in series: Analysis of junctional channel modulation by membrane potential, calcium and pH, J. Membr. Biol. 73:69–89.PubMedGoogle Scholar
  82. Ochi, R., and Nishiye, H., 1973, Temperature dependence of the healing-over in mammalian cardiac muscle, Proc. Jpn. Acad. 49:372–375.Google Scholar
  83. Oliveira-Castro, G. M., and Loewenstein, W. R., 1971, Junctional membrane permeability: Effects of divalent cations, J. Membr. Biol. 5:51–77.Google Scholar
  84. Pappas, G. D., and Bennett, M. V. L., 1966, Specialized junctions involved in electrical transmission between neurons, Ann. N.Y. Acad. Sci. 137:495–508.PubMedGoogle Scholar
  85. Pappas, G. D., Asada, Y., and Bennett, M. V. L., 1971, Morphological correlates of increased coupling resistance at an electrotonic synapse, J. Cell Biol. 49:173–182.PubMedGoogle Scholar
  86. Payton, B. W., Bennett, M. V. L., and Pappas, G. D., 1969, Temperature dependence of resistance at an electrotonic junction, Science 165:594–597.PubMedGoogle Scholar
  87. Peracchia, C., and Dulhunty, A. F., 1976, Low resistance junctions in crayfish: Structural changes with functional uncoupling, J. Cell Biol. 70:419–439.PubMedGoogle Scholar
  88. Pitts, J. D., 1971, Molecular exchange and growth control in tissue culture, in: Ciba Foundation Symposium on Growth Control in Cell Cultures (G. E. Wolstenholme and J. Knight, eds.), pp.89–105, Livingstone, London.Google Scholar
  89. Pitts, J. D., 1976, Junctions as channels of direct communications between cells, in: The Development of Biology of Plants and Animals (C. F. Graham and E. F. Wareing, eds.), pp. 96–110,Blackwell, Oxford.Google Scholar
  90. Pitts, J. D., and Finbow, M. E., 1977, Junctional permeability and its consequence, in: Intercellular Communication (W. C. De Mello, ed.), pp. 61–86, Plenum Press, New York.Google Scholar
  91. Politoff, A. L., Socolar, S. J., and Loewenstein, W. R., 1969, Permeability of a cell membrane junction: Dependence on energy metabolism, J. Gen. Physiol. 53:498–515.PubMedGoogle Scholar
  92. Pollack, G. H., 1976, Intercellular coupling in the atrioventricular node and other tissues of the heart, J. Physiol. (London) 255:275–298.Google Scholar
  93. Pollack, G. H., and Huntmann, L. L., 1973, Intercellular pathways in the heart: Direct evidence for low resistance channels, Experientia 29:1501.PubMedGoogle Scholar
  94. Potter, D. D., Furshpan, E. J., and Lennox, E. S., 1966, Connections between cells of the developing squid as revealed by electrophysiological methods, Proc. Natl. Acad. Sci. USA 55:328.PubMedGoogle Scholar
  95. Ramon, F., and Zampighi, G., 1980, On the electrotonic coupling mechanism of crayfish segmented axons: Temperature, dependence of junctional conductance, J. Membr. Biol. 54:165–171.PubMedGoogle Scholar
  96. Rasmussen, H., 1975, Ions as “second messengers,” in: Cell Membranes, Biochemistry, Cell Biology and Pathology (G. Weismann and R. Claiborne, eds.), pp. 203–212, HP Publishing, New York.Google Scholar
  97. Reber, W., and Weingart, R., 1982, Ungulate cardiac Purkinje fibres: The influence of intracellular pH on the electrical cell-to-cell coupling, J. Physiol. (London) 328:87–104.Google Scholar
  98. Reuter, H., and Scholz, H., 1977, The regulation of the calcium conductance of cardiac muscle by adrenaline, J. Physiol. (London) 264:49–62.Google Scholar
  99. Reuter, H., and Seitz, N., 1968, The dependence of calcium efflux from cardiac muscle on temperature and external ion composition, J. Physiol. (London) 195:451–470.Google Scholar
  100. Rose, B., and Loewenstein, W. R., 1971, Junctional membrane permeability, J. Membr. Biol. 5:20– 50.Google Scholar
  101. Rose, B., and Loewenstein, W. R., 1975, Calcium ion distribution in cytoplasm visualized by aequorin: Diffusion in cytosol restricted by energized sequestering, Science 190:1204–1206.PubMedGoogle Scholar
  102. Rose, B., and Rick, R., 1978, Intracellular pH, intracellular free Ca, and junctional cell-to-cell coupling, J. Membr. Biol. 44:377–415.PubMedGoogle Scholar
  103. Rose, B., Simpson, I., and Loewenstein, W. R., 1977, Calcium ion produces graded changes in permeability of membrane channels in cell junction, Nature 267:625–621.PubMedGoogle Scholar
  104. Rothschuh, K. E., 1951, Ueber den funkionellen Aufbau des Herzens aus elektrophysiologischen Elementen and ueber den Mechanisms der Erregungsleitung in Herzen, Pfluegers Arch. 253:238–251.Google Scholar
  105. Sakamoto, Y., 1969, Membrane characteristic of the canine papillary muscle fiber, J. Gen. Physiol. 54:765–781.PubMedGoogle Scholar
  106. Scheutze, S. M., and Goodenough, D. A., 1982, Dye transfer between cells of embryonic chick lens becomes less sensitive to CO2 treatment with development, J. Cell Biol. 92:694–705.Google Scholar
  107. Schwarzmann, G., Wiegandt, H., Rose, B., Zimmerman, A., Ben-Haim, D., and Loewenstein, W. R., 1981, Diameter of the cell-to-cell junctional membrane channels as probed with neutral molecules, Science 213:551–553.PubMedGoogle Scholar
  108. Shen, A. C., and Jennings, R. B., 1972, Kinetics of calcium accumulation in acute myocardial ischemic injury, Am. J. Pathol. 67:441–452.PubMedGoogle Scholar
  109. Sheridan, J. D., Finbow, M. E., and Pitts, J. D., 1979, Metabolic interactions between animal cells through permeable intercellular junctions, Exp. Cell Res. 123:111–117.PubMedGoogle Scholar
  110. Simpson, I., Rose, B., and Loewenstein, W. R., 1977, Size limit of molecules permeating the junctional membrane channels, Science 195:294–296.PubMedGoogle Scholar
  111. Sotelo, C., Llinas, R., and Baker, R., 1974, Structural study of inferior olivary nucleus of the cat, morphological correlates of electrotonic coupling, J. Neurophysiol. 37:541–559.PubMedGoogle Scholar
  112. Spira, M. E., and Bennett, M. V. L., 1972, Synaptic control of electrotonic coupling between neurons, Brain Res. 37:294–300.PubMedGoogle Scholar
  113. Spray, D. C., and Bennett, M. V. L., 1985, Physiology and pharmacology of gap junctions, Annu. Rev. Physiol. 47:281–303.PubMedGoogle Scholar
  114. Spray, D. C., Harris, A. L., and Bennett, M. V. L., 1979, Voltage dependence on junctional conductance in early amphibian embryos, Science 204:432–434.PubMedGoogle Scholar
  115. Spray, D. C., Harris, A. L., and Bennett, M. V. L., 1981, Gap junctional conductance is a simple and sensitive function of intracellular pH, Science 211:712–715.PubMedGoogle Scholar
  116. Spray, D. C., Stern, J. H., Harris, A. L., and Bennett, M. V. L., 1982, Gap junctional conductance: Comparison of sensitivities to H and Ca ions, Proc. Natl. Acad. Sci. USA 79:441–445.PubMedGoogle Scholar
  117. Spray, D. C., White, R. L., Campos de Carvalho, A., Harris, A. L., and Bennett, M. V. L., 1984, Gating of gap junction channels, Biophys. J. 45:219–230.PubMedGoogle Scholar
  118. Stewart, W. C., 1978, Functional connections between cells as revealed by dye-coupling with a high fluorescent naphthalimide tracer, Cell 14:741–759.PubMedGoogle Scholar
  119. Trautwein, W., 1964, Pathophysiologie des Herzflimmerns, Verh. Dtsch. Ges. Kreislaufforsch 30:40–56.Google Scholar
  120. Trautwein, W., Kuffler, S. W., and Edwards, C., 1956, Changes in membrane characteristics of heart muscle during inhibition, J. Gen. Physiol. 40:135–145.PubMedGoogle Scholar
  121. Tsien, R., and Weingart, R., 1976, Inotropic effect of cyclic AMP in calf ventricular muscle studied by a cut-end method, J. Physiol. (London) 260:117–141.Google Scholar
  122. Turin, L., and Warner, A. E., 1977, Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryos, Nature 270:56–57.PubMedGoogle Scholar
  123. Turin, L., and Warner, A. E., 1980, Intracellular pH in early Xenopus embryos: Its effect on current flow between blastomeres, J. Physiol. (London) 300:489–504.Google Scholar
  124. Weidmann, S., 1952, The electrical constants of Purkinje fibres, J. Physiol. (London) 118:348–360.Google Scholar
  125. Weidmann, S., 1966, The diffusion of radiopotassium across intercalated discs of mammalian cardiac muscle, J. Physiol. (London) 187:323–342.Google Scholar
  126. Weidmann, S., 1970, Electrical constants of trabecular muscle from mammalian heart, J. Physiol (London) 210:1041–1054.Google Scholar
  127. Weingart, R., 1974, The permeability to tetraethylammonium ions of the surface membrane and the intercalated disks of the sheep and calf myocardium, J. Physiol. (London) 240:741–762.Google Scholar
  128. Weingart, R., 1977, The action of ouabain on intercellular coupling and conduction velocity in mammalian ventricular muscle, J. Physiol. (London) 264:341–365.Google Scholar
  129. Weingart, R., 1981, Cell-to-cell coupling in cardiac tissue, Proc. 28th Int. Cong. Physiol. Sci. 8:59–68, Budapest, Akademiai Kiado.Google Scholar
  130. Werner, M., 1910, Besteht die Herzmuskulatur der Säugetiere aus allseitz scharf begrentzten Zeller o der nicht?, Arch. Mikrosk. Anat. 71:101–129.Google Scholar
  131. Woodbury, J. W., and Crill, W. E., 1961, On the problem of impulse conduction in the atrium, in: Nervous Inhibition (E. Florey, ed.), pp. 124–125, Pergamon Press, Elmsford, N.Y.Google Scholar
  132. Yancey, S. B., Nicholson, B. J., and Revel, J.-P., 1981, The dynamic state of liver gap junctions, J. Supramol. Struct. Cell Biochem. 16:221–232.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Walmor C. De Mello
    • 1
  1. 1.Department of Pharmacology, Medical Sciences CampusUniversity of Puerto RicoSan JuanPuerto Rico

Personalised recommendations