Advertisement

Effects of Nicotine and Exposure to Cigarette Smoke on Discrete Dopamine and Noradrenaline Nerve Terminal Systems of the Telencephalon and Diencephalon of the Rat: Relationship to Reward Mechanisms and Neuroendocrine Functions and Distribution of Nicotinic Binding Sites in Brain

  • K. Fuxe
  • K. Andersson
  • P. Eneroth
  • A. Härfstrand
  • A. Nordberg
  • L. F. Agnati
Part of the Advances in Behavioral Biology book series (ABBI, volume 31)

Abstract

The anatomy of the brain cholinergic neurons has recently been explored by immunocytochemistry using antibodies against choline acetyltransferase (CAT) (1). Large numbers of cholinergic interneurons were then demonstrated within the nucleus caudatus putamen, the nucleus accumbens, and the tuberculum olfactorium. But in the hypothalamus, only cholinergic nerve terminals were described, while cholinergic nerve cell bodies could not be identified with certainty (see inter alia 2, 3). Acetylcholinesterase-positive but not CAT-positive nerve cell bodies have been described within the mediobasal hypothalamus, but the origin of the cholinergic nerve terminals in the hypothalamus is presently unknown.

Keywords

Cigarette Smoke Median Eminence Neuroendocrine Function Nicotinic Cholinergic Receptor LHRH Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cuello, A.C., and Sofroniew, M.V.: The anatomy of the CNS cholinergic neurons. TINS, March 74–78, 1984.Google Scholar
  2. 2.
    Satoh, K., Armstrong, D.M. and Fibiger, H.C.: A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and CAT immunocytochemistry. Brain Res. Bull., 11:693–720, 1983.PubMedCrossRefGoogle Scholar
  3. 3.
    Rodriguez-Sierra, J.F. and Morley B.J.: Evidence that cell bodies in the arcuate nucleus of the hypothalamus are not cholinergic Neuroendocrinology, in press, 1986.Google Scholar
  4. 4.
    Pepeu, G.: Brain acetylcholine: An inventory of our knowledge on the 50th anniversary of its discovery. TIPS Reviews, October 416–418, 1983.Google Scholar
  5. 5.
    Larsson, C.: Nicotine receptors in the central nervous system: Methodological and functional aspects. Acta Universitas Upsaliensis, abstracts of Uppsala disserition from the Faculty of Pharmacy 104:4–45, 1985.Google Scholar
  6. 6.
    Larsson, C. and Nordberg, A.: Studies of nicotine-like binding sites in brain. In: Neurotransmitters and their receptors, eds. V.Z. Littauer, Y. Ondai, J. Silman and V.I. Vogel, pp. 297–301, John Wiley & Sons, 1980.Google Scholar
  7. 7.
    Nordberg, A., Larsson, C., Falkeborn, Y., Lundberg, P.-A. and Premysl, S.: Development of nicotine-like binding sites in discrete areas of mouse brain findings using different nicotinic ligands. In: Developmental Neuroscience: Physiol. Pharmacol. and Clinical Aspects eds. F. Caciagli, E. Giacobini and R. Paoletti. Elsevier Science-Publ. B.V. pp. 101–106, 1984.Google Scholar
  8. 8.
    Clarke, P.B., Pert, C.B. and Pert, A.: Autoradiographic distribution of nicotine receptors in rat brain. Brain Res., 323:390–395, 1984.PubMedCrossRefGoogle Scholar
  9. 9.
    Clarke, P.B.S., Schwartz, R.D., Paul, S.M. Pert, C.B. and Pert, A.: Nicotinic binding in rat brain: Autoradiographic comparison of [3H]nicotine and [125I]α-bungarotoxin. J. Neurosci. 5:1307–1315, 1985.PubMedGoogle Scholar
  10. 10.
    Larsson, C. and Nordberg, A.: Comparative analysis of nicotine-like ligand receptor interaction in rodent brain homogenate. J. Neurochem. 45:24–31, 1985.PubMedCrossRefGoogle Scholar
  11. 11.
    London, E.D., Waller, S.B. and Wamsley, J.K.: Autoradiographic localization of [3H] nicotine binding sites in the rat brain. Neurosci. Lett. 53:179–184, 1985.PubMedCrossRefGoogle Scholar
  12. 12.
    Morley, B.J., Farley, G.R. and Javel, E.: Nicotinic acetylcholine receptors in mammalian brain. Trends Pharmacol. Sci., 4:225–227, 1983.CrossRefGoogle Scholar
  13. 13.
    Rainbow, T.C., Schwartz, R.D., Parsons, B. and Kellar, K.J.: Quantitative autoradiography of nicotinic [3H]acetylcholine binding sites in rat brain. Neurosci. Lett., 50:193–196, 1984.PubMedCrossRefGoogle Scholar
  14. 14.
    Schwartz, R.D., Lehmann, J. and Kellar, K.J.: Presynaptic nicotinic cholinergic receptors labeled by [3H]acetylcholine on catecholamine and serotonin axons in brain. J. Neurochem., 42:1495–1498, 1984.PubMedCrossRefGoogle Scholar
  15. 15.
    Nordberg, A. and Larsson, C.: Studies of muscarinic and nicotinic binding sites in brain. Acta Physiol. Scand. Suppl. 479:19–23, 1980.PubMedGoogle Scholar
  16. 16.
    Andersson, K., Fuxe, K., Eneroth, P., Mascagni, F. and Agnati, L.F.: Effects of acute intermittent exposure to cigarette smoke on catecholamine levels and turnover in various types of hypothalamic DA and NA nerve terminal systems as well as on the secretion of adenohypophyseal hormones and corticosterone. Acta Physiol. Scand. 124:277–285, 1985.PubMedCrossRefGoogle Scholar
  17. 17.
    Curvall, M., Kazemi-Vala, E. and Enzell, C.R.: Simultaneous determination of nicotine and cotinine in plasma using capillary column gas chromatography with nitrogen-sensitive detection. J. Chromotogr., 232:283–293, 1982.CrossRefGoogle Scholar
  18. 18.
    Andersson, K., Fuxe, K. and Agnati, L.F.: Determinations of catecholamine half-lives and turnover rates in discrete catecholamine nerve terminal systems of the hypothalamus, the preoptic region and the forebrain by quantitative histofluorimetry. Acta Physiol. Scand. 123:411–426, 1985.PubMedCrossRefGoogle Scholar
  19. 19.
    Nilsen, O.G., Toftgard, R. and Eneroth, P.: Effects of acrylonitrile on rat liver cytochrome P-450 benzo(a)pyrene metabolism and serum hormone levels. Toxicol. Lett., 6:399–404, 1980.PubMedCrossRefGoogle Scholar
  20. 20.
    Fuxe, K., Siegel, R.A., Andersson, K., Eneroth, P., Mascagni, F. and Agnati, L.F.: Acute continuous exposure to cigarette smoke produces discrete changes in cholecystokinin and substance P levels in the hypothalamus and preoptic area of the male rat. Acta Physiol. Scand., 125:437–443, 1985.PubMedCrossRefGoogle Scholar
  21. 21.
    Agnati, L.F., Fuxe, K, Benfenati, F., Calza, L. and Fabbri, L.: Computer-assisted morphometry in immunocytochemistry and receptor autoradiography: impact on neuroendocrine control. In: Computers in Endocrinology eds. D. Rodbard and G. Forti, pp. 171–185, Raven Press, New York, 1984.Google Scholar
  22. 22.
    Benfenati, F., Agnati, L.F. and Fuxe, K.: Quantitative autoradiography of central neurotransmitter receptors: Methodological and statistical aspects with special reference to computer-assisted image analysis. Acta Physiol. Scand., in press, 1986.Google Scholar
  23. 23.
    Fuxe, K., Calza, L., Benfenati, F., Zini, I. and Agnati, L.F.: Quantitative autoradiographic localization of [3H]imipramine binding sites in the brain of the rat: relationship to ascending 5-hydroxytryptamine neuron systems. Proc. Natl. Acad. Sci., USA 80:3836–3840, 1983.PubMedCrossRefGoogle Scholar
  24. 24.
    Hökfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J.M. and Schultzberg, M.: Peptidergic neurons. Nature, (London), 248:515,1980.CrossRefGoogle Scholar
  25. 25.
    Andersson, K., Fuxe, K. and Agnati, L.F.: Effects of single injections of nicotine on the ascending dopamine pathways in the rat. Acta Physiol. Scand. 112:345–347, 1981.PubMedCrossRefGoogle Scholar
  26. 26.
    Lichtensteiger, W, Felix, D., Hefti, F. and Schlumpf, M.: Effects of nicotine on dopamine neurons of adult and prenatal mammals and of invertebrates. In Electrophysiological effects of nicotine, eds. A. Remond and C. Izard, pp. 15–30, Elsevier/North Holland Biomedical Press, Amsterdam, 1979.Google Scholar
  27. 27.
    Giorguieff, M.F., Le Floc’h, M.L., Westfall, T.C., Glowinski, J. and Besson, M.J.: Nicotinic effect of acetylcholine on the release of newly synthesized [3H] dopamine in rat striatal slices and cat caudate nucleus. Brain Res., 106:117–131, 1976.PubMedCrossRefGoogle Scholar
  28. 28.
    Roberts, D.C.S., Corcoran, M.E. and Fibiger, H.C.: Recovery of cocaine self-administration after 6-OHDA lesion of the nuc. accumbens correlates with residual dopamine levels. In: Catecholamines: Basic and clinical frontiers, eds. E. Usdin, I.J. Kopin &Barchas, Vol. 2 pp. 1774–1776, Pergamon Press, New York, 1979.Google Scholar
  29. 29.
    Andersson, K., Fuxe, K., Agnati, L.F. and Eneroth, P.: Effects of acute central and peripheral administration of nicotine on ascending dopamine pathways in the male rat brain. Evidence for nicotine induced increases of dopamine turnover in various telencephalic dopamine nerve terminal systems. Med. Biol., 59:170–176, 1981.PubMedGoogle Scholar
  30. 30.
    Usdin, E., Carlsson, A., Dahlstrom, A. and Engel, J.: Catecholamines Part C: Neuropharmacology and central nervous system -therapeutic aspects. In: Neurology and Neurobiology Vol. 8C. Alan R. Liss, Inc., New York, 1984.Google Scholar
  31. 31.
    Fuxe, K., Andersson, K., Harfstrand, A. and Agnati, L.K: Increases in dopamine utilization in certain limbic dopamine terminal populations after a short period of intermittent exposure of male rats to cigarette smoke. J. Neural Transm. 67:15–29, 1986.PubMedCrossRefGoogle Scholar
  32. 32.
    Andersson, K., Fuxe, K., Eneroth, P., Gustafsson, J.-A. and Agnati, L.F.: Mecamylamine induced blockade of nicotine induced inhibition of gonadrotrophin and TSH secretion and of nicotine induced increases of catecholamine turnover in the rat hypothalamus. Acta Physiol. Scand., Suppl. 479:27–29, 1980.Google Scholar
  33. 33.
    Andersson, K., Siegel, R., Fuxe, K. and Eneroth, P.: Intravenous injections of nicotine induced very rapid and discrete reductions of hypothalamic catecholamine levels associated with increases of ACTH, vasopressin and prolactin secretion. Acta Physiol. Scand. 118:35–40, 1983.PubMedCrossRefGoogle Scholar
  34. 34.
    Andersson, K., Eneroth, P. and Agnati, L.F.: Nicotine-induced increases of noradrenaline turnover in discrete noradrenaline nerve terminal systems of the hypothalamus and the median eminence of the rat and their relationship to changes in the secretion of adenohypophyseal hormones. Acta Physiol. Scand., 113:227–231, 1981.PubMedCrossRefGoogle Scholar
  35. 35.
    McCann, S.M., Krulich, L., Ojeda, S.R., Negro-Vilar, A and Vijayan, E.: Neurotransmitters in the control of anterior pituitary function. In: Central regulation of the endocrine system, eds. K. Fuxe, T. Hokfelt, and R. Luft, pp. 329–347, Plenum Press, New York and London, 1979.Google Scholar
  36. 36.
    Andersson, K., Fuxe, K., Eneroth, P., Nyberg, P. and Roos, P.: Rat prolactin and hypothalamic catecholamine nerve terminal systems. Evidence for rapid and discrete increases in dopamine and noradrenaline turnover in the hypophysectomized male rat. Eur. J. Pharmacol. 76:261–265, 1981.PubMedCrossRefGoogle Scholar
  37. 37.
    Andersson, K., Agnati, L.F., Fuxe, K., Eneroth, P., Harfstrand and Benfenati, F.: Corticotropin-releasing factor increases noradrenaline turnover in the median eminence and reduces noradrenaline turnover in the paraventricular region of the hypophysectomized male rat. Acta Physiol. Scand. 120:621–624, 1984.PubMedCrossRefGoogle Scholar
  38. 38.
    Andersson, K., Fuxe, K., Eneroth, P., Blake, C.A., Agnati, L.F. and Gustafsson, J.-A.: Effects of androgenic and adrenocortical steroids on hypothalamic and preoptic catecholamine nerve terminals and on the secretion of anterior pituitary hormones. In: Steroid Hormone Regulation of the Brain, eds. K. Fuxe, J.-A. Gustafsson, L. Wetterberg, pp. 117–133, Pergamon Press, Oxford, 1981.Google Scholar
  39. 39.
    Gainer, H.: Current topics in neurobiology. In: Peptides in Neurobiology, pp. 1–464, Plenum Press, New York, 1977.CrossRefGoogle Scholar
  40. 40.
    Andersson, K., Fuxe, K., Eneroth, P. and Agnati, L.F.: Effects of acute central and peripheral administration of nicotine on hypothalamic catecholamine nerve terminal systems and on the secretion of adenohypophyseal hormones in the male rat. Med. Biol., 60:98–111, 1982.PubMedGoogle Scholar
  41. 41.
    Andersson, K., Fuxe, K., Agnati, L.F., Eneroth, P. and Camurri, M.: Luteinizing hormone-releasing hormone increases dopamine turnover in the lateral palisade zone of the median eminence and reduces noradrenaline turnover in the nuc. preopticus medialis of the hypophysectomized male rat. Neurosci. Lett., 45:253–258, 1984.PubMedCrossRefGoogle Scholar
  42. 42.
    Fuxe, K., Andersson, K., Lofstrom, A., Hokfelt, T., Ferland, L., Agnati, L.F., Perez de la Mora, M. and Schwarcz, R.: Neurotransmitter mechanisms in the control of secretion of hormones from the anterior pituitary. In: Central Regulation of the Endocrine System, eds. K. Fuxe, T. Hokfelt &R. Luft, pp. 349–380, Plenum Press, New York, 1979.Google Scholar
  43. 43.
    Fuxe, K. Agnati, L.F., Eneroth, P., Gustafsson, J.-A., Hokfelt, T., Lofstrom, A., Skett, B. and Skett, P.: The effect of nicotine on central catecholamine neurons and gonadotropin secretion. I. Studies in the male rat. Med. Biol., 55:148–157, 1977.Google Scholar
  44. 44.
    Eneroth, P., Fuxe, K., Gustafsson, J.-A., Hokfelt, T., Lofstrom, A., Skett, P. and Agnati, L.F.: The effect of nicotine on central catecholamine neurons and gonadotropin secretion. II. Inhibitory influence of nicotine on LH, FSH and prolactin secretion in the ovariectomized female rat and its relation to regional changes in dopamine and noradrenaline levels and turnover. Med. Biol., 55:158–166, 1977.PubMedGoogle Scholar
  45. 45.
    Andersson, K. Fuxe, K., Eneroth, P. and Agnati, L.F.: Involvement of cholinergic nicotine-like receptors as modulators of amine turnover in various types of hypothalamic dopamine and noradrenaline nerve terminal systems and of prolactin, LH, FSH and TSH secretion in the castrated male rat. Acta Physiol. Scand. 116:41–50, 1982.PubMedCrossRefGoogle Scholar
  46. 46.
    Andersson, K., Fuxe, K., Eneroth P. and Agnati, L.F.: Differential effects of mecamylamine on the nicotine induced changes in amine levels and turnover in hypothalamic dopamine and noradrenaline nerve terminal systems and in the secretion of adenohypophyseal hormones in the castrated female rat. Evidence for involvement of cholinergic nicotine-like receptors. Acta Physiol. Scand., 120:489–498, 1984.CrossRefGoogle Scholar
  47. 47.
    Fuxe, K., Agnati, L.F., Benfenati, F., Andersson, K., Camurri, M. and Zoli, M.: Evidence for the existence of a dopamine receptor of the Dl type in the rat median eminence. Neurosci. Lett., 43:185–190, 1983.PubMedCrossRefGoogle Scholar
  48. 48.
    Iorio, L.C., Barnett, A., Leitz, F.H., Houser, V.P. and Korduba, C.A.: SCH 23390 a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J. Pharmacol. Exp. Ther. 255: 539, 1983.Google Scholar
  49. 49.
    Andersson, K., Fuxe, K., Eneroth, and Harfstrand, A.: The effects of a Dl dopamine receptor blocking drug on the neuroendocrine actions of nicotine treatment and of acute intermittent exposure to cigarette smoke in the male rat. Relationship to median eminence catecholamines. Acta Physiol. Scand., in press, 1986.Google Scholar
  50. 50.
    Andersson, K.: Mecamylamine pretreatment counteracts cigarette smoke induced changes in hypothalamic catecholamine neuron systems and in anterior pituitary function. Acta Physiol. Scand. 125:445–452, 1985.PubMedCrossRefGoogle Scholar
  51. 51.
    Andersson, K., Fuxe, K., Eneroth, P. and Agnati, L.F. Effects of acute continuous exposure of the male rat to cigarette smoke on amine levels and utilization in discrete hypothalamic catecholamine nerve terminal systems and on neuroendocrine function. Possible presence of depolarization induced blockade in catecholamine nerve terminals. Acta Physiol. Scand., in press, 1986.Google Scholar
  52. 52.
    Fuxe, K., Everitt, B.J. and Hokfelt, T.: Enhancement of sexual behavior in the female rat by nicotine. Pharmacol. Biochem. Behav. 7:147–151, 1977.PubMedCrossRefGoogle Scholar
  53. 53.
    Vijayan, E. and McCann, S.M.: In vivo and in vitro effects of substance P and neurotensin on gonadotropin and prolactin release. Endocrinology, 105:64–68, 1979.PubMedCrossRefGoogle Scholar
  54. 54.
    Vijayan, E., Samson, W.K. and McCann, S.M.: In vivo and in vitro effects of cholecystokinin on gonadotropin, prolactin, growth hormone and thyrotropin release in the rat. Brain Res. 172:295–302, 1979.PubMedCrossRefGoogle Scholar
  55. 55.
    Kiss, J.Z.: Anatomical studies of cholecystokinin in neurons and pathways involved in neuroendocrine regulation. In: Neuronal Cholecystokinin, eds. J.J. Vanderhaeghen &J.N. Crawley, Annals of the New York, Academy of Sciences, Vol. 448, pp. 144–151, 1985.Google Scholar
  56. 56.
    Vanderhaeghen, J.J., Lotstra, F. and Gilles, C.: Gastrin(s) and cholecystokinin(s) in central nervous system and pituitary: relationship with dopamine, oxytocin and alpha-MSH containing cells and with limbic nigrostriatal systems. Horm. Res., 12:182–183, 1980.CrossRefGoogle Scholar
  57. 57.
    Mezey, E., Reisine, T.D., Skirboll, L. Beinfeld, M. and Kiss, J.Z.: Cholecystokinin in the medial parvocellular subdivision of the paraventricular nucleus. Co-existence with corticotropin-releasing hormone. In: Neuronal Cholecystokinin, eds. J.J. Vanderhaeghen &J.N. Crawley. Annals of the New York Academy of Sciences, Vol. 448:152–156, 1985.Google Scholar
  58. 58.
    Fuxe, K., Andersson, K., Agnati, L.F., Eneroth, P., Locatelli, V., Caviocchioli, L., Mascagni, F., Tatemoto, K. and Mutt, V.: The influence of cholecystokinin peptides and PYY on the amine turnover in discrete hypothalamic dopamine and noradrenaline nerve terminal systems and possible relationship to neuroendocrine function. Inserm, Vol. 110: 65–86, 1982.Google Scholar
  59. 59.
    Fuxe, K., Andersson, K., Eneroth, P., Siegel, R.A. and Agnati, L.F.: Immobilization stress-induced changes in discrete hypothalamic catecholamine levels and turnover, their modulation by nicotine and relationship to neuroendocrine function. Acta Physiol. Scand., 117:421–426, 1983.PubMedCrossRefGoogle Scholar
  60. 60.
    Fuxe, K., Agnati, L.F., Vanderhaeghen, J.-J., Tatemoto, K., Andersson, K., Eneroth, P., Härfstrand, A., von Euler, G., Toni, R., Goldstein, M. and Mutt, V.: Cholecystokinin neuron systems and their interactions with the presynaptic features of the dopamine neuron systems. A morphometric and neurochemical analysis involving studies on the action of cholecystokinin-8 and Cholecystokinin-58. In: Neuronal Cholecystokinin, eds. J.J. Vanderhaeghen &J.N. Crawley, Ann. N.Y. Acad. Sci., 448:231–254, 1985.PubMedCrossRefGoogle Scholar
  61. 61.
    Baile, C.A. and Della-Fera, M.A.: Central Cholecystokinin System and the control of feeding. In: Neuronal Cholecystokinin, eds. J.J. Vanderhaeghen &J.N. Crawley, Annals of the New York, Academy of Sciences, Vol. 448, pp. 424–430, 1985.Google Scholar
  62. 62.
    Faris, P.L., Scallett, A.C., Olney, J.W., Della-Fera, M.A. and Baile, C.A.: Behavioral and immunohistochemical analysis of the function of cholecystokinin in the hypothalamic paraventricular nucleus. Soc. Neurosci. Abstr., 9:184, 1983.Google Scholar
  63. 63.
    Andersson, K., Eneroth, P., Fuxe, K., Mascagni, F. and Agnati, L.F.: Effects of chronic exposure to cigarette smoke on amine levels and turnover in various hypothalamic catecholamine nerve terminal systems and on the secretion of pituitary hormones in the male rat. Neuroendocrinology, 41:462–466, 1985.PubMedCrossRefGoogle Scholar
  64. 64.
    Andersson, K., Fuxe, K., Eneroth, P. and Härfstrand, A.: Effects of withdrawal from chronic exposure to cigarette smoke on amine levels and turnover in various hypothalamic catecholamine nerve terminal systems and on the secretion of pituitary hormones in the male rat. Acta Physiol. Scand., in press, 1986.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • K. Fuxe
    • 2
  • K. Andersson
    • 2
  • P. Eneroth
    • 2
  • A. Härfstrand
    • 1
  • A. Nordberg
    • 3
  • L. F. Agnati
    • 4
  1. 1.Dept. of HistologyKarolinska InstitutetStockholmSweden
  2. 2.Research and Development Laboratory, Dept. of Obstetrics & GynecologyKarolinska HospitalStockholmSweden
  3. 3.Dept. of Pharmacology Biomedical CenterUniv. of UppsalaUppsalaSweden
  4. 4.Dept. of Human PhysiologyUniv. of ModenaModenaItaly

Personalised recommendations