Inversion Electrons in InSb in Crossed Electric and Magnetic Fields

  • U. Merkt


A crossed field configuration for electrons is created by the strong electric field that is perpendicular to a space-charge layer and a magnetic field that is applied parallel to the layer. On InSb simultaneously diamagnetically shifted intersubband resonances and cyclotron resonances have been observed in inversion layers in this crossed field configuration. These experiments are reviewed and are compared with simple analytical expressions for eigenenergies and optical excitation strengths of the hybrid electric-magnetic surface band structure in the triangular-well approximation of the electrostatic potential (constant surface electric field). In addition to the one-band effective-mass approximation, we also treat a two-band model that takes into account the effects of nonparabolicity in narrow-gap semiconductors. In particular, we find that cyclotron masses of inversion electrons on InSb in crossed fields show in a rather spectacular way the analogy between electrons in narrow-gap semiconductors and relativistic electrons in vacuum and we demonstrate the destruction of the Landau quantization in strong transverse electric fields.


Cyclotron Resonance Landau Level Magnetic Case Surface Electric Field Diamagnetic Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. S. Khaikin, Adv. Phys. 18:1 (1969).ADSCrossRefGoogle Scholar
  2. 2.
    T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54:437 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    F. Koch, in: “Physics in High Magnetic Fields -Proceedings of the Oji International Seminar, Hakone, Japan, 1980”, S. Chikazumi and M. Miura, ed., Springer, Berlin, 1981.Google Scholar
  4. 4.
    H. Schaber and R. E. Doezema, Phys. Rev. B 20:5257 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    J. H. Crasemann, U. Merkt, and J. P. Kotthaus, Phys. Rev. B 28: 2271 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    U. Merkt, Phys. Rev. B 32:6699 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    W. Zawadzki, S. Klahn, and U. Merkt, Phys. Rev. Lett. 55:983 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    S. Oelting, U. Merkt, and J. P. Kotthaus, Surf. Sci. 170:402 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    W. Zawadzki, S. Klahn, and U. Merkt, Phys. Rev. B 33:6916 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    M. Reine, Q. H. F. Vrehen, and B. Lax, Phys. Rev. 163:726 (1967).ADSCrossRefGoogle Scholar
  11. 11.
    J. D. Jackson, “Classical Electrodynamics”, Wiley, New York (1975).MATHGoogle Scholar
  12. 12.
    J. C. P. Miller, in: “Handbook of Mathematical Functions”, M. Abramowitz and I. A. Stegun, ed., Dover, New York (1965), Chap. 19, pp. 685–720.Google Scholar
  13. 13.
    E. A. Kaner, N. M. Makarov, and I. M. Fuks, Zh. Eksp. Teor. Fiz. 55:931 (1968)Google Scholar
  14. 13a.
    P. Dean, Proc. Cambridge Philos. Soc. 62:277 (1966).MathSciNetADSCrossRefGoogle Scholar
  15. 14.
    U. Kunze, Surf.Sci. 170:353 (1986).ADSCrossRefGoogle Scholar
  16. 15.
    W. Zawadzki, Surf. Sci. 37:218 (1973).ADSCrossRefGoogle Scholar
  17. 16.
    J. R. Apel, T. O. Poehler, C. R. Westgate, and R. I. Joseph, Phys. Rev. B 4:436 (1971).ADSCrossRefGoogle Scholar
  18. 17.
    J. Scholz, F. Koch, H. Maier, and J. Ziegler, Solid State Commun. 45:39 (1983)ADSCrossRefGoogle Scholar
  19. 18.
    K. Wiesinger, H. Reisinger, and F. Koch, Surf. Sci. 113:102 (1982).ADSCrossRefGoogle Scholar
  20. 19.
    W. Zawadzki, J. Phys. C 16:229 (1983).ADSCrossRefGoogle Scholar
  21. 20.
    W. Zawadzki and B. Lax, Phys. Rev. Lett. 16:1001 (1966)ADSCrossRefGoogle Scholar
  22. 21.
    W. Zawadzki, in: “Proceedings of the 9th International Conference on the Physics of Semiconductors” Nauka, Leningrad (1968), Vol.1, p.312.Google Scholar
  23. 22.
    S. Klahn, M. Horst, and U. Merkt, in: “Proceedings of the 18th International Conference on the Physics of Semiconductors”, Stockholm (1986), in press.Google Scholar
  24. 23.
    C. R. Pidgeon, in: “Handbook on Semiconductors”, T.S. Moss, ed., North-Holland, Amsterdam (1980), Vol. 2, Chap. 5, pp. 223–328.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • U. Merkt
    • 1
  1. 1.Institut für Angewandte PhysikUniversität HamburgHamburg 36Germany

Personalised recommendations