The Influence of Subinhibitory Concentrations of Antibiotics on the Bacterial Surface with Respect to Host Defense Mechanisms

  • W. Opferkuch
  • K. H. Büscher
  • H. Leying
  • M. Pawelzik
  • S. Suerbaum


It is well known that a successful treatment of bacterial infections depends on an effective host defense system. This observation presupposes either that the antibiotic treatment reduces the number of bacteria in a given infection and that the remaining bacteria are subsequently eliminated by the host-defense system, or that antibiotics render bacteria more susceptible to host defense mechanisms. In addition, it is well established that β-lactam antibiotics interfere with peptidoglycan synthesis and that this is combined with changes in the shape of bacteria. Several authors (2,3,12) have pointed out that there is a mutual influence between peptidoglycan and membrane synthesis, but the arrangement and composition of the outer membrane under the influence of (β-lactam antibiotics have so far not been investigated adequately.


Outer Membrane Outer Membrane Protein Proteus Mirabilis Buoyant Density Subinhibitory Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. C. Allison and G. Gregoriades, Liposomes as immunological adjuvants,Nature 252:252 (1974).PubMedCrossRefGoogle Scholar
  2. 2.
    J. Amaral, Effect of subminimal inhibitory concentrations of mecillinam on the synthesis of DNA, RNA and protein of Salmonella typhimurium: A proposed mechanism of action, Rev. Infect. Dis. 1:813 (1979).CrossRefGoogle Scholar
  3. 3.
    J. L. Brissette, G. D. Shockman and R. A. Pieringer, Effects of penicillin on synthesis and excretion of lipid and lipoteichoic acid from Streptococcus mutant BHT, J. Bacteriol. 151:838 (1982).PubMedGoogle Scholar
  4. 4.
    R. James, Identification of an outer membrane protein of Escherichia coli, with a role in the coordination of desoxyribonucleic acid replication and cell elongation, J. Bacteriol. 124:918 (1975).PubMedGoogle Scholar
  5. 5.
    H. Karch, J. Gmeiner and K. Nixdorff, Alteration of the immunoglobulin G subclass responses in mice to lipopolysaccharide: effects of nonbacterial proteins and bacterial membrane phospholipids or outer membrane proteins of Proteus mirabilis, Infect. Immun. 40:157 (1983).PubMedGoogle Scholar
  6. 6.
    H. Karch, H. Leying, K. H. Buscher, H. P. Kroll and W. Opferkuch, Isolation and separation of physicoehemically distinct fimbrial types expressed on a single culture of Escherichia coli 07:K1:H6, Infect. Immun. 47:549 (1985).PubMedGoogle Scholar
  7. 7.
    H. Karch and K. Nixdorff, Antibody-producing cell responses to an isolated outer membrane protein and to complexes of this antigen with lipopolysaccharide or with vesicles of phospholipids from Proteus mirabilis, Infect. Immun. 31:862 (1981).PubMedGoogle Scholar
  8. 8.
    Y. D. Karkhanis, J. Y. Zeltner, J. J. Jackson and D. J. Carlo, A new and improved microassay to determine 2-keto-3-deoxy-octonate in lipopolysaccharide of gram-negative bacteria, Anal. Biochem. 85:595 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    H. P. Kroll, S. Bhakdi and P. W. Taylor, Membrane changes induced by exposure of Escherichia coli to human serum, Infect. Immun. 42:1055 (1983).PubMedGoogle Scholar
  10. 10.
    B. B. Mishell and S. M. Shigii, eds., “Selected Methods in Cellular Immunology,” Freeman, San Francisco (1980).Google Scholar
  11. 11.
    S. Muller, F. Falkenberg, R. A. Fromtling, A. M. Fromtling and V. Klimetzek, Signals of chemiluminescence emitted by spleen cells and bone marrow macrophages after stimulation with mitogens and particulate substances, in: “Bioluminescence and Chemiluminescence,” M. A. de Luca and W. D. McElroy, eds., Academic Press, New York (1981).Google Scholar
  12. 12.
    H. J. Rogers and P. F. Thurman, Interrelationships between wall and membrane synthesis, in: “The Target of Penicillin,” R. Hackenbeck, J. V. Holtje and H. Labischinski, eds., Walter de Gruyter, Berlin, New York (1983).Google Scholar
  13. 13.
    E. Ruttkowski and K. Nixdorff, Qualitative and quantitative changes in the antibody-producing cell responses to lipopolysaccharide induced after incorporation of the antigen into bacterial membrane phospholipid vesicles, J. Immunol. 124:2548 (1980).PubMedGoogle Scholar
  14. 14.
    S. Schlecht and O. Westphal, Uber die Herstellung von Antiseren gegen somatische (O-) Antigene von Salmonellen. II. Mitteilung: Untersuchungen uber Hamagglutinintiter, Zbl. Bakt. Hyg. Abt. I, Orig. 205:487 (1967).Google Scholar
  15. 15.
    K. Vosbeck, H. Handschin, E. B. Menge and O. Zak, Effects of subminimal inhibitory concentrations of antibiotics on adhesiveness of Escherichia coli in vitro, Rev. Infect. Pis. 1:845 (1979).CrossRefGoogle Scholar
  16. 16.
    P. W. Taylor, H. Gaunt and F. M. Unger, Effect of subinhibitory concentrations of mecillinam on the serum susceptibility of E. coli strains, Antimicrob. Agents Chemother. 19:786 (1981).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • W. Opferkuch
    • 1
  • K. H. Büscher
    • 1
  • H. Leying
    • 1
  • M. Pawelzik
    • 1
  • S. Suerbaum
    • 1
  1. 1.Medizinische Mikrobiologie und ImmunologieRuhr-Universität BochumBochumGermany

Personalised recommendations