Skip to main content

Prediction in Quantum Cosmology

  • Chapter
Gravitation in Astrophysics

Part of the book series: NATO ASI Series ((NSSB,volume 156))

Abstract

As far as we know them, the fundamental laws of physics are quantum mechanical in nature. If these laws apply to the universe as a whole, then there must be a description of the universe in quantum mechancial terms. Even our present cosmological observations require such a description in principle, although in practice these observations are so limited and crude that the approximation of classical physics is entirely adequate. In the early universe, however, the classical approximation is unlikely to be valid. There, towards the big bang singularity, at curvatures characterized by the Planck length, (ћG/c 3)1/2 , quantum fluctuations become important and eventually dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Discussions of the general problems encountered in the search for initial conditions may be found in R. Penrose, in General Relativity: an Einstein Centenary Survey ,ed. by S. W. Hawking and W. Israel (Cambridge University Press, Cambridge, 1979), J. B. Hartle in Inner Space/Outerspace: the Interface between Cosmology and Particle Physics ,ed. by E. W. Kolb, et.al. (University of Chicago Press, Chicago, 1986) and J. Barrow and F. Tipler, The Anthropic Principle ,(Clarendon Press, Oxford, 1986). A sample of specific proposals for laws for initial conditions may be found in the article by Penrose cited above and in Refs 2-5.

    Google Scholar 

  2. S. W. Hawking, in Astrophysical Cosmology: Proceedings of the Study Week on Cosmology and Fundamental Physics ed. by H. A. Brüch, G. V. Coyne and M. S. Longair (Pontificiae Academiae Scientiarum Scripta Varia, Vatican City, 1982)

    Google Scholar 

  3. J. B. Hartle and S. W. Hawking, Phys. Rev. D28: 2960, (1983).

    MathSciNet  ADS  Google Scholar 

  4. A. Vilenkin, Phys. Lett. B117: 25, (1983), Phys. Rev. D27: 2848, (1983),

    ADS  Google Scholar 

  5. A. Vilenkin,Phys. Rev. D30: 509, (1984),

    MathSciNet  ADS  Google Scholar 

  6. A. Vilenkin, Phys. Rev. D32: 2511, (1985), TUTP preprint 85-7.

    MathSciNet  ADS  Google Scholar 

  7. J. V. Narlikar and T. Padmanabhan, Physics Reports 100: 151, (1983)

    Article  MathSciNet  ADS  Google Scholar 

  8. Padmanabhan “Quantum Cosmology - The Story So Far” (unpublished lecture notes).

    Google Scholar 

  9. W. Fischler, B. Ratra, L. Susskind, Nucl. Phys. B 259: 730, (1985).

    Article  MathSciNet  ADS  Google Scholar 

  10. The author’s lectures at Cargese were somewhat more extensive than presented here. Some of this material can be found in the author’s lectures in High Energy Physics 1985: Proceedings of the Yale Theoretical Advanced Study Institute ed. by M. J. Bowick and F. Gürsey (World Scientific, Singapore 1985).

    Google Scholar 

  11. For a clear review of the basic ideas in canonical quantum gravity in greater detail than can be presented here see K. Kuchar, in Relativity Astrophysics and Cosmology ed. by W. Israel (D. Reidel, Dordrecht, 1973) and in Quantum Gravity 2 ed. by C. Isham, R. Penrose and D. Sciama (Clarendon Press, Oxford, 1981).

    Google Scholar 

  12. See, e.g., H. Everett, Rev. Mod. Phys. 29: 454, (1957), the many articles reprinted and cited in The Many Worlds Interpretation of Quantum Mechanics ,ed. by B. DeWitt, and N. Graham, (Princeton University Press, Princeton, 1973), M. Gell-Mann (unpublished), and the lucid discussion in R. Geroch, Nous 18: 617, (1984).

    Google Scholar 

  13. D. Finkelstein, Trans. N.Y. Acad. Sci. 25: 621, (1963); N. Graham, unpublished Ph.D. dissertation, University of North Carolina 1968 and in The Many Worlds Interpretation of Quantum Mechanics ,ed. by B. DeWitt, and N. Graham (Princeton University Press, Princeton, 1973); and J. B. Hartle Am. J. Phys. 36: 704, (1968).

    MathSciNet  Google Scholar 

  14. For a very clear discussion of this equivalence and its consequences see C. M. Caves, Phys. Rev. D33: 1643, (1986) and to be published.

    MathSciNet  ADS  Google Scholar 

  15. H. Salecker and E. P. Wigner, Phys. Rev. 109: 571, (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. B. DeWitt, Phys. Rev. 160: 1113, (1967).

    Article  ADS  MATH  Google Scholar 

  17. A. Peres, Am. J. Phys. 48: 552, (1980).

    Article  MathSciNet  ADS  Google Scholar 

  18. D. Page and W. Wooters, Phys. Rev. D27: 2885, (1983)

    ADS  Google Scholar 

  19. W. Wooters, Int. J. Th. Phys. 23: 701, (1984).

    Article  Google Scholar 

  20. See, e.g., J. B. Hartle and S. W. Hawking, Phys. Rev. D28: 2960, (1983), S.

    MathSciNet  ADS  Google Scholar 

  21. 15A. W. Hawking (to be published), D. N. Page (to be published) J. B. Hartle, Class. Quant. Grav. 2: 707, (1985),

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. 15B. A. Anderson and B. DeWitt, Found. Phys. (to be published).

    Google Scholar 

  23. See, e.g., H. Hamber and R. Williams, Phys. Lett. 157B: 368, (1985), Nucl.

    MathSciNet  ADS  Google Scholar 

  24. 16A. See, e.g., H. Hamber and R. Williams, Phys. B267: 482, (1986),

    MathSciNet  Google Scholar 

  25. 16B. See, e.g., H. Hamber and R. Williams, ibid B269: 712, (1986);

    MathSciNet  Google Scholar 

  26. See, e.g., H. Hamber and R. Williams, H. Hamber in Critical Phenomema, Random Systems and Gauge Theories: Les Houches 1984 ed-by R. Stora and K. Osterwalder (Elsiever Science Publishers, Amsterdam, 1986)

    Google Scholar 

  27. 16A. J. B. Hartle, J. Math. Phys. 26: 804, (1985).

    Article  MathSciNet  ADS  Google Scholar 

  28. H. Leutwyler, Phys. Rev. 134: B1155, (1964)

    Article  MathSciNet  ADS  Google Scholar 

  29. B. S. DeWitt, in Magic Without Magic: John Archibald Wheeler ,ed. by J. Klauder, (Freeman, San Francisco, 1972),

    Google Scholar 

  30. L. Faddeev, and V. Popov, Usp. Fiz. Nauk. 111: 427, (1973)

    Google Scholar 

  31. L. Faddeev, and V. Popov, Sov. Phys. -Usp. 16: 777, (1974),

    Article  MathSciNet  ADS  Google Scholar 

  32. E. Fradkin and G. Vilkovisky, Phys. Rev. D8: 4241, (1973),

    MathSciNet  ADS  Google Scholar 

  33. M. Kaku, Phys. Rev. D15: 1019, (1977).

    ADS  Google Scholar 

  34. E.g., S. W. Hawking in Relativity Groups and Topology II ed. by B. DeWitt and R. Stora (Elsevier, Amsterdam, 1984).

    Google Scholar 

  35. G. Gibbons, S. W. Hawking and M. Perry, Nucl. Phys. B138: 141, (1978),

    Article  MathSciNet  ADS  Google Scholar 

  36. J. B. Hartle and K. Schleich in the Festschrift for E. Fradkin (to be published), K. Schleich (to be published).

    Google Scholar 

  37. J.A. Wheeler in Problemi dei fondamenti delta fisica, Scoula internazionale di fisica “Enrico Fermi” Corso 52 ed. by G. Toraldo di Francia (North Holland, Amsterdam, 1979).

    Google Scholar 

  38. T. Banks, Nucl. Phys. B249: 332, (1985).

    Article  ADS  Google Scholar 

  39. S. W. Hawking and J. Halliwell, Phys. Rev. D31: 1777, (1985).

    MathSciNet  ADS  Google Scholar 

  40. P. D’Eath and J. Halliwell, (to be published).

    Google Scholar 

  41. R. Brout, G. Horwitz and D. Weil (to be published).

    Google Scholar 

  42. J. B. Hartle (to be published).

    Google Scholar 

  43. S. Hojman, K. Kuchar, and C. Teitelboim, Ann. Phys. (N.Y.) 76: 97, (1976).

    MathSciNet  Google Scholar 

  44. See, e.g., N. D. Birrell and P. C. W. Davies Quantum Fields in Curved Space(Cambridge University Press, Cambridge, 1982).

    MATH  Google Scholar 

  45. A. Barvinsky and V. N. Ponomariov, Phys. Lett. 167B: 289, (1986),

    MathSciNet  ADS  Google Scholar 

  46. A. Barvinsky, Phys. Lett. 175B: 401, (1986).

    MathSciNet  ADS  Google Scholar 

  47. C. Misner, K. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman, SanFrancisco, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Hartle, J.B. (1987). Prediction in Quantum Cosmology. In: Carter, B., Hartle, J.B. (eds) Gravitation in Astrophysics. NATO ASI Series, vol 156. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1897-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1897-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9056-8

  • Online ISBN: 978-1-4613-1897-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics