Advertisement

Application of Additive Regional Kalman Filtering to X-Ray Images in NDE

  • John P. Basart
  • Yi Zheng
  • Edward R. Doering
Conference paper
Part of the Review of Progress in Quantitative Nondestructive Evaluation book series (RPQN, volume 6 A)

Abstract

One of the time consuming procedures in inspecting parts by x-ray film is the identification of a flaw. Low contrast films of dense objects especially cause problems. A radiologist must have considerable experience in identification in order to keep the examination time relatively small, but also keep the reliability high. Our objective in this project is to develop a computer procedure that will sufficiently enhance flaws in an image in a manner that will reduce the time it takes a human to locate and identify a flaw.

Keywords

Kalman Filter Quantum Fluctuation Error Covariance Matrix Spatial Activity Dense Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Halmshaw, Information theory applied to industrial radiography, in: Research Techniques in Nondestructive Testing, vol. II, R. S. Sharpe, ed., Academic press, New York (1973).Google Scholar
  2. 2.
    R. Halmshaw, Industrial Radiology: Theory and Practice, Applied Science Publishers Ltd, England (1982).CrossRefGoogle Scholar
  3. 3.
    B. J. Schachter, L. S. Davis, A Rosenfeld, Pattern Recognition, 11, 19 (1979).CrossRefGoogle Scholar
  4. 4.
    S. A. Rajala, R. J. P. de Figueiredo, IEEE Trans. A.S.S.P. 29, 1033 (1981).MATHGoogle Scholar
  5. 5.
    J. T. Tou, and R. C. Gonzalez, Pattern Recognition Principles, Addison-Wesly, Reading, MA (1974).MATHGoogle Scholar
  6. 6.
    G. E. P. Box, and G. M. Jenkins, Time Series Analysis: Forecasting and Control, rev. ed., Holden-day, San Francisco, CA (1976).Google Scholar
  7. 7.
    D. W. Marquardt, J. Soc. Ind. Appl. Math., 11, 431 (1963).CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    A. Pankratz, Forecasting with Univariate Box-Jenkins Models, John Wiley, New York (1983).CrossRefGoogle Scholar
  9. 9.
    W. A. Fuller, Introduction to Statistical Time Series, John Wiley & Sons, Inc, New York (1976).MATHGoogle Scholar
  10. 10.
    A. Bovas and J. Ledolter, Statistical Methods for Forecasting, John Wiley & Sons, Inc., New York (1983).MATHGoogle Scholar
  11. 11.
    R. E. Kalman, Trans. ASME, 82, 35 (1960).CrossRefGoogle Scholar
  12. 12.
    R. E. Kalman, and R. S. Bucy, Trans. ASME 83, 95 (1961).CrossRefMathSciNetGoogle Scholar
  13. 13.
    R. G. Brown, Introduction to Random Signal Analysis and Kalman Filtering, John Wiley , New York (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • John P. Basart
    • 1
  • Yi Zheng
    • 1
  • Edward R. Doering
    • 1
  1. 1.Center for NDEIowa State UniversityAmesUSA

Personalised recommendations