Skip to main content

Atomic Force Microscopy: General Principles and a New Implementation

  • Conference paper

Part of the book series: Review of Progress in Quantitative Nondestructive Evaluation ((RPQN,volume 6 A))

Abstract

Recently, Binnig, Quate, and Gerber developed the atomic force microscope (AFM), an instrument which senses minute (10-12 – 10-8 N) forces between a sharp tip and a sample surface [1], In addition to enabling the study of solid-solid interactions on a unprecedentedly small scale, the AFM provides a general method for doing non-destructive surface profilometry at a resolution better than 10 nm and perhaps down to the atomic level. In this paper we review the principles of the AFM, discuss its potential resolution and data rate, describe our new AFM design, and present some initial results. We have obtained three dimensional surface profiles with 20 nm lateral resolution, which to our knowledge is better than what has been attained previously by stylus profilometry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig, C. F. Quate and Ch. Gerber, Phys. Rev. Lett. 12, 930 (1986).

    Article  Google Scholar 

  2. G. Binnig and H. Rohrer, IBM J. Res. and Develop. 30, 355 (1986).

    Google Scholar 

  3. C. F. Quate, Physics Today 39, 26 (1986).

    Article  Google Scholar 

  4. G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).

    Article  Google Scholar 

  5. U. Dürig, J. K. Gimzewski, and D. W. Pohl, Phys. Rev. Letts., to be published.

    Google Scholar 

  6. E. C. Teague, F. E. Scire, S. M. Baker, and S.W. Jensen, Wear 83, 1 (1982).

    Article  Google Scholar 

  7. J. M. Bennet and J. H. Dancy, Appl. Opt. 20, 1785 (1981).

    Article  Google Scholar 

  8. G. S. Kino, P. C. D. Hobbs, and T. Corle, this volume; J. C. Wyant, C. L. Koliopoulos, B. Bhusan, and O. E. George, ASLE Trans. 27, 101 (1984).

    Article  Google Scholar 

  9. U. Dürig, D. W. Pohl, and F. Rohner, J. Appl. Phys. 59+9, 3318 (1986).

    Article  Google Scholar 

  10. C. F. Quate, Phys. Today 38, 34 (1985).

    Article  Google Scholar 

  11. D. Tabor and R. H. S. Winterton, Proc. R. Soc. London A 312, 435 (1969).

    Article  Google Scholar 

  12. See, for example, R. G. Horn and J. N. Israelachvili, J. Chem. Phys. 75, 1400 (1981).

    Google Scholar 

  13. A. W. Adamson, “Physical Chemistry of Surfaces,” Wiley, New York (1976).

    Google Scholar 

  14. J. N. Israelachvili, “Intermolecular and Surface Forces,” Academic Press, London (1985).

    Google Scholar 

  15. G. M. McClelland, to be published.

    Google Scholar 

  16. K. E. Peterson, Proc. IEEE, 70, 420 (1982).

    Article  Google Scholar 

  17. S. Chiang and R. J. Wilson, IBM J. Res. and Develop. 30, Sept. (1986).

    Google Scholar 

  18. Ch. Gerber, G. Binnig, H. Fuchs, O. Marti, and H. Rohrer, Rev. Sci. Instrum. 57, 221 (1986).

    Article  Google Scholar 

  19. R. Gomer, “Field Emission and Field Ionization,” Harvard University Press, Cambridge (1961).

    Google Scholar 

  20. E. W. Müller and T. T. Tsong, “Field Ion Microscopy, Principles and Applications,” Elsevier, New York (1969).

    Google Scholar 

  21. G. Binnig, H. Fuchs, Ch. Gerber, H. Rohrer, E. Stoll, and E. Tosatti, Europhys. Lett. 1, 31 (1986).

    Article  Google Scholar 

  22. R. Sonnenfeld and P. K. Hansma, Science 232, 211 (1986).

    Article  Google Scholar 

  23. S.-I. Park and C. F. Quate, Appl. Phys. Lett. 48, 112 (1986).

    Article  Google Scholar 

  24. E. C. Teague, “Room Temperature Gold-Vacuum-Gold Tunneling Experiments,” University Microfilms International, Ann Arbor, Michigan (1978).

    Google Scholar 

  25. J. M. Soler, A. M. Baro, N. Garcia, and H. Rohrer, Phys. Rev. Lett. 57, 444 (1986).

    Article  Google Scholar 

  26. R. J. Wilson and S. Chiang, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this paper

Cite this paper

McClelland, G.M., Erlandsson, R., Chiang, S. (1987). Atomic Force Microscopy: General Principles and a New Implementation. In: Thompson, D.O., Chimenti, D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation. Review of Progress in Quantitative Nondestructive Evaluation, vol 6 A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1893-4_148

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1893-4_148

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9054-4

  • Online ISBN: 978-1-4613-1893-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics