Electric Microfield Distributions

  • James W. Dufty
Part of the NATO ASI Series book series (volume 154)

Abstract

Recent research on controlled fusion by inertial confinement has stimulated renewed consideration of atomic phenomena in hot, dense plasmas. In many cases the dominant coupling of the atom to its plasma environment is through the atomic dipole interaction with the local electric microfield. The electric microfield distribution (probability density for a given field value) is therefore an important property of the plasma for description of such atomic processes as emission and absorption of radiation. Prior to laser-produced plasmas, typical laboratory experiments involved only weakly coupled plasmas and quite accurate theories were available to calculate the microfield distributions under such conditions1,2. These theories fail for strongly-coupled plasmas and present research has focused on calculations for more extreme plasma conditions. Progress in this direction was initiated by Iglesias, et. al.3,4 who proposed a method for ion fields at charged points, which gives excellent agreement with computer simulations of strongly coupled classical one component plasmas (OCP) in two and three dimensions. Extension of this method to multi-component plasmas also proved fruitful5. Subsequently, others have addressed related aspects of microfields in dense plasmas such as ion fields at neutral points, electron fields7, effects of atomic structure8, and quantum degeneracy9,10. The objective here is to review these developments in a general context, to clarify some of the approximations used, and to identify some of the remaining problems.

Keywords

Argon Covariance Assure Rium Neon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Baranger and B. Mozer, Phys. Rev. 115, 521 (1959)ADSMATHCrossRefGoogle Scholar
  2. 1a.
    B. Mozer and M. Baranger, Phys. Rev. 118, 626 (1960)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 1b.
    H. Margenau and M. Lewis, Rev. Mod. Phys. 31, 569 (1959)ADSMATHCrossRefGoogle Scholar
  4. 1c.
    H. Pfenning and E. Trefftz, Z. Naturf 219, 697 (1966).ADSGoogle Scholar
  5. 2.
    C. F. Hooper, Jr. Phys. Rev. 149, 77 (1966)ADSCrossRefGoogle Scholar
  6. 2a.
    C. F. Hooper, Jr. Phys. Rev.165, 215 (1968)ADSCrossRefGoogle Scholar
  7. 2b.
    C. A. Iglesias and C. F. Hooper Phys. Rev. A25, 1049 (1982).ADSGoogle Scholar
  8. 3.
    C. A. Iglesias, Phys. Rev. A27, 2705 (1983).MathSciNetADSGoogle Scholar
  9. 4.
    C. A. Iglesias, J. L. Lebowitz, and D. MacGowan, Phys. Rev. A28,1667 (1983).MathSciNetADSGoogle Scholar
  10. 5.
    C. A. Iglesias and J. L. Lebowitz, Phys. Rev. A30, 2001 (1984).ADSGoogle Scholar
  11. 6.
    J. W. Dufty, D. B. Boercker, and C. A. Iglesias, Phys. Rev. A31, 1681 (1985).ADSGoogle Scholar
  12. 7.
    X-Z Yan and S. Ichimaru, Phys. Rev. A34, 2167 (1986).ADSGoogle Scholar
  13. 8.
    M. W. C. Dharma-wardana and F. Perrot, Phys. Rev. A33, 3303 (1986).ADSGoogle Scholar
  14. 9.
    D. B. Boercker and J. W. Dufty, in Radiactive Properties of Hot, Dense Matter, J. Davis, et. al., editors (World Scientific Pub. Co., Singapore, 1985)Google Scholar
  15. 9a.
    D. B. Boercker and J. W. Dufty,and in Spectral Line Shapes, Vol. 2, K. Burnett, editor (W. de Gruyter, NY, 1983).Google Scholar
  16. 10.
    B. Held, M. Gombert, and C. Deutsch, Phys. Rev. A31, 921 (1985).ADSGoogle Scholar
  17. 11.
    J..W. Dufty in Proceedings of CECAM Workshops on U.V. and X-Ray Spectra of Hot and Dense Plasmas (Orsay, France, 1976)Google Scholar
  18. 11a.
    C. A. Iglesias and J. W. Dufty in Spectral Line Shapes, Vol. 2,K. Burnett, editor (de Gruyter, NY, 1983).Google Scholar
  19. 12.
    The plasma parameter is defined here by Γ= (e2 /ℓ0 )/(2K/3), where ℓ0 is the average interparticle distance and K is the average kinetic energy per particle. In the high temperature limit Γ→(e2 /ℓ0 )/(kBT) which is the usual classical plasma parameter. In the low temperature limit Γ→1.35 rs where rs is the usual zero temperature coupling constant.Google Scholar
  20. 13.
    See, for example, A. Haur in Spectral Line Shapes, B. Wende, editor (de Gruyter, Berlin, 1981).Google Scholar
  21. 14.
    R. J. Trainor, J. W. Shaner, J. M. Auerbach, and N. C. Holmes, Phys. Rev. Lett 42, 1154 (1979).ADSCrossRefGoogle Scholar
  22. 15.
    J. P. Hansen and I. McDonald, Theory of Simple Liquids, (Academic Press, NY, 1976).Google Scholar
  23. 16.
    F. J. Rogers, J. Chem. Phys. 73, 6272 (1980).ADSCrossRefGoogle Scholar
  24. 17.
    S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982)ADSCrossRefGoogle Scholar
  25. 17a.
    M. Baus and J. P. Hansen, Phys. Rev. 59, 1 (1980).MathSciNetGoogle Scholar
  26. 18.
    S. Ichimaru, S. Mitake, S. Tanaka, and X-Z Yan, Phys. Rev. A32, 1768 (1985)ADSGoogle Scholar
  27. 18a.
    ibid A32, 1775 (1985).Google Scholar
  28. 19.
    M. W. C. Dharma-wardana and F. Perrot, Phys. Rev. A26, 2096 (1982)ADSGoogle Scholar
  29. 19a.
    ibid A29, 1378 (1984).Google Scholar
  30. 20.
    H. R. Griem, Spectral Line Broadening by Plasmas, (Academic Press, NY, 1974).Google Scholar
  31. 21.
    Doppler effects have been deleted from this expression for notational simplicity their inclusion is straightforward and does not change any of the following discussion.Google Scholar
  32. 22.
    E. Smith, J. Cooper, and C. Vidal, Phys. Rev. 185, 140 (1969)ADSCrossRefGoogle Scholar
  33. 22a.
    D. Voslamber, Z. Naturf 249, 1458 (1969)ADSGoogle Scholar
  34. 22b.
    T. Hussey, J. W. Dufty, and C. F. Hooper, Phys. Rev. A12, 1084 (1975)ADSGoogle Scholar
  35. 22c.
    J. W. Dufty and D. B. Boercker, J. Quant. Spectrosc. Radiat. Trans. 16, 1065 (1976).ADSCrossRefGoogle Scholar
  36. 23.
    A. Brissaud and V. Frisch, J. Quant. Spectrosc. Radiat. Transf. 11, 1761 (1971).ADSCrossRefGoogle Scholar
  37. 24.
    J. Seidel, Z. Naturforsch 32a, 1207 (1977).ADSGoogle Scholar
  38. 25.
    J. W. Dufty in Spectral Line Shapes, Vol. 1, B. Wende, editor (W. de Gruyter, Berlin, 1981).Google Scholar
  39. 26.
    A. Isihara, Statistical Physics (Academic Press, N.Y., 1971).Google Scholar
  40. 27.
    The discussion here is limited to methods applicable even for very strongly coupled plasmas (e.g., Γ &gt 10).Some other methods are available for the intermediate coupling range of Γ ~ 1. See, for example, F. Perrot and M. W. C. Dharma-wardana, Physica 134A, 231 (1985).ADSGoogle Scholar
  41. 28.
    A. Alastuey, C. Iglesias, J. Lebowitz, and D. Levesque, Phys. Rev. A30, 2537 (1984).ADSGoogle Scholar
  42. 29.
    H. C. Anderson and D. Chandler, J. Chem. Phys. 57, 1918 (1972).ADSCrossRefGoogle Scholar
  43. 30.
    F. Lado (preprint, and elsewhere in this volume).Google Scholar
  44. 31.
    J. L. Lebowitz and J. K. Percus, Phys. Rev. 144, 251 (1966).ADSCrossRefGoogle Scholar
  45. 32.
    T. L. Hill, Statistical Mechanics, (McGraw-Hill, NY, 1956).MATHGoogle Scholar
  46. 33.
    D. B. Boercker (private communication).Google Scholar
  47. 34.
    E. Pollock (private communication).Google Scholar
  48. 35.
    M. Gombert, H. Minoo, and C. Deutsch, Phys. Rev. A29, 940 (1984)ADSGoogle Scholar
  49. 35a.
    M. Gombert, H. Minoo, and C. Deutsch, Phys. Rev.A23, 924 (1981).ADSGoogle Scholar
  50. 36.
    More generally the local field correction is a function of frequency as well as wavevector see Ref. 17 for a discussion of approximations that neglect the frequency.Google Scholar
  51. 37.
    R. J. Tighe and C. F. Hooper, Phys. Rev. A15, 1773 (1977).ADSGoogle Scholar
  52. 38.
    D. B. Boercker and R. M. More, Phys. Rev. A33, 1859 (1986).MathSciNetADSGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • James W. Dufty
    • 1
  1. 1.Department of PhysicsUniversity of FloridaGainesvilleUSA

Personalised recommendations