Theory of the Strongly Coupled 2-D Plasma with the 1/r Potential

  • Kenneth I. Golden
Part of the NATO ASI Series book series (volume 154)


The classical two-dimensional (2-d) Coulomb fluid of electrons trapped in surface states above a liquid-helium surface is a fascinating one-component-plasma (ocp) configuration which has been of experimental and theoretical interest since the early 1970’s. In the actual laboratory setup1, extra electrons are deposited in a monolayer just above the free surface of liquid helium and are confined there by means of image binding. The electrons are accordingly constrained to execute only horizontal (parallel-to-the-surface) motions, and they interact via the ϕ (r) = e2/r potential (r is the horizontal range). A compensating uniform positive background is provided by an electrode placed below the liquid surface. At a temperature T ~ 0.5K and over the range 105 < n< 109 cm-2 of areal densities realized in the Grimes-Adams experiments1c,1d, β EF<.06 and 1.5 < Γ=β e2√πn< 150; we may therefore consider the electrons to be classical strongly correlated particles.


Approximation Scheme Weak Coupling Pair Correlation Function Plasma Mode BBGKY Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1(a).
    T. R. Brown and C. C. Grimes, Phys. Rev. Lett. 29;1233 (1972);ADSCrossRefGoogle Scholar
  2. 1(b).
    C. C. Grimes and T. R. Brown, Phys. Rev. Lett. 32:280 (1974);ADSCrossRefGoogle Scholar
  3. 1(c).
    C. C. Grimes and G. Adams, Phys. Rev. Lett. 36:145 (1976);ADSCrossRefGoogle Scholar
  4. 1(d).
    C. C. Grimes and G. Adams, Phys. Rev. Lett.42:797 (1979).ADSCrossRefGoogle Scholar
  5. 2.
    R. W. Hockney and T. R. Brown, J. Phys. C8:1813 (1975).ADSGoogle Scholar
  6. 3.
    R. C. Gann, S. Chakravarty and G. V. Chester, Phys. Rev. B20:324 (1979)ADSGoogle Scholar
  7. 4.
    M. W. Cole, Rev. Mod. Phys. 46:451 (1974).ADSCrossRefGoogle Scholar
  8. 5.
    P. M. Platzman and H. Fukuyama, Phys. Rev. B10:3150 (1974).ADSGoogle Scholar
  9. 6.
    D. J. Thouless, J. Phys. C11:L189 (1978).MathSciNetADSGoogle Scholar
  10. 6a.
    R. H. Morf, Phys. Rev. Lett. 13:931 (1979).ADSCrossRefGoogle Scholar
  11. 7.
    A. L. Fetter, Phys. Rev. B1O:3739 (1974).ADSGoogle Scholar
  12. 8.
    J. Chalupa, Phys. Rev. B12:4 (1975).ADSGoogle Scholar
  13. 9(a).
    H. Totsuji, J. Phys. Soc. Japan 39:253 (1975);ADSCrossRefGoogle Scholar
  14. 9(b).
    J. Phys. Soc. Japan 40:857 (1976);ADSCrossRefGoogle Scholar
  15. 9(c).
    Phys. Rev. A19:889 (1979).ADSGoogle Scholar
  16. 10.
    F. Lado, Phys. Rev. B17:2827 (1978).ADSGoogle Scholar
  17. 11.
    H. Totsuji and N. Kakeya, Phys. Rev. A22:1220 (1980).ADSGoogle Scholar
  18. 12.
    R. S. Crandall, Phys. Rev. A8:2136 (1973).ADSGoogle Scholar
  19. 13.
    P. M. Platzman and N. Tzoar, Phys. Rev. B13:3197 (1976).ADSGoogle Scholar
  20. 14.
    K. S. Singwi, M. P. Tosi, R. H. Land and A. Sjolander, Phys. Rev.176:589 (1968)ADSCrossRefGoogle Scholar
  21. 14a.
    K. S. Singwi, A. Sjolander, M. P. Tosi and R. H. Land, Sol. State Commun. 7:1503 (1969)ADSCrossRefGoogle Scholar
  22. 14b.
    K. S. Singwi, A. Sjolander, M. P. Tosi and R. H. Land, Phys. Rev. Bl:1044 (1970)ADSGoogle Scholar
  23. 15.
    N. Studart and O. Hipolito, Phys. Rev. A22:2860 (1980).ADSGoogle Scholar
  24. 16.
    M. Baus, J. Stat. Phys. 19:163 (1978).ADSCrossRefGoogle Scholar
  25. 17.
    K. I. Golden and De-xin Lu, Phys. Rev. A31:1763 (1985).ADSGoogle Scholar
  26. 18.
    K. I. Golden and G. Kalman, Phys. Rev. A19:2112 (1979).ADSGoogle Scholar
  27. 19.
    K. I.Golden, G. Kalman and De-xin Lu, “Velocity-Average-Approximation Approach to Two-Dimensional Classical Electron Plasmas”, submitted to Phys. Rev. A.Google Scholar
  28. 20.
    De-xin Lu and K. I. Golden, Commun. in Theor. Phys. (Beijing, China) 4:21 (1985).Google Scholar
  29. 21.
    De-xin Lu and K. I. Golden, Phys. Rev. A28:976 (1983).ADSGoogle Scholar
  30. 22.
    J. Coste, Nucl. Fusion 5:284 (1965); 5:293 (1965).CrossRefGoogle Scholar
  31. 23.
    De-xin Lu and K. I. Golden, Phys. Lett. 97A:391 (1983).ADSGoogle Scholar
  32. 24.
    K. I. Golden and G. Kalman, Ann. Phys. (N.Y.) 143:160 (1982).ADSCrossRefGoogle Scholar
  33. 25.
    L. Bonsall and A. A. Maradudin, Phys. Rev. B15:1959 (1977).ADSGoogle Scholar
  34. 26(a).
    H. Totsuji, Phys. Rev. A19:889 (1979)ADSGoogle Scholar
  35. 27.
    P. Carini and G. Kalman, Phys. Lett. 105A:229 (1984); G. Kalman, “Plasmon Dispersion in Strongly Coupled Plasmas”, invited paper, XIIth Symposium on the Physics of Ionized Gases, Sibenik, Yugoslavia, 1984.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Kenneth I. Golden
    • 1
  1. 1.Department of Computer Science and Electrical EngineeringThe University of VermontBurlingtonUSA

Personalised recommendations