Skip to main content

Kinetic Theory of the Interdiffusion Coefficient in Dense Plasmas

  • Chapter
Strongly Coupled Plasma Physics

Part of the book series: NATO ASI Series ((ASIB,volume 154))

  • 336 Accesses

Abstract

Ionic diffusion in dense plasma mixtures has been of interest recently for a number of reasons. In astrophysics, diffusion plays a central role in understanding the distribution of heavy elements in the atmospheres of White Dwarf stars.1 The performance of multi-layer x-ray mirrors should be affected by diffusion, and the evaporation rate of metal “chunks” injected into the fuel of an ICF capsule by hydrodynamic instabilities is controlled by the diffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Paquette, C. Pelletier, G. Fontaine, and G. Michaud (preprint); G. Fontaine (this proceedings).

    Google Scholar 

  2. L. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience, New York 1956).

    MATH  Google Scholar 

  3. Y. T. Lee and R. M. More, Phys. Fluids 27:1273 (1984).

    Article  ADS  MATH  Google Scholar 

  4. J. P. Hansen, F. Joly, and I. R. McDonald, Physica 132A:472 (1985).

    ADS  Google Scholar 

  5. D. B. Boercker, A. J. Ladd, and E. L. Pollock, Lawrence Livermore National Laboratory Report No. UCID-20507, Livermore, CA, 1985.

    Google Scholar 

  6. J. P. Hansen and I. R. McDonald, Physics of Simple Liquids, (Academic, NY, 1976)

    Google Scholar 

  7. C. Cohen, J. Sutherland, and J. Deutch, Phys. Chem. Liq. 2:213 (1971).

    Article  Google Scholar 

  8. J. Hirschfelder, C. Curtis and R. Bird, Molecular Theory of Gases and Liquids, (John Wiley, New York, 1954).

    MATH  Google Scholar 

  9. See, for instance, J. I. Castresana, G. F. Mazenko and S. Yip, Ann. Phys. (N.Y.) 103:1 (1977).

    Article  ADS  Google Scholar 

  10. Note that kinetic energy is conserved only in the hydrodynamic limit k→0, z→0.

    Google Scholar 

  11. M. Baus, Physica 38A:319 (1977).

    ADS  Google Scholar 

  12. This is equivalent to making a one Sonine polynomial approximation.

    Google Scholar 

  13. See, for instance, S. Ichimaru, Basic Principles of Plasma Physics (Academic, New York, 1973).

    Google Scholar 

  14. J. Wallenborn and M. Baus, Phys. Rev. A 18:1737 (1978).

    Article  ADS  Google Scholar 

  15. H. Gould and G. Mazenko, Phys. Rev. A 15:1274 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Boercker, D.B. (1987). Kinetic Theory of the Interdiffusion Coefficient in Dense Plasmas. In: Rogers, F.J., Dewitt, H.E. (eds) Strongly Coupled Plasma Physics. NATO ASI Series, vol 154. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1891-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1891-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9053-7

  • Online ISBN: 978-1-4613-1891-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics