Kinetic Theory of the Interdiffusion Coefficient in Dense Plasmas

  • David B. Boercker
Part of the NATO ASI Series book series (volume 154)


Ionic diffusion in dense plasma mixtures has been of interest recently for a number of reasons. In astrophysics, diffusion plays a central role in understanding the distribution of heavy elements in the atmospheres of White Dwarf stars.1 The performance of multi-layer x-ray mirrors should be affected by diffusion, and the evaporation rate of metal “chunks” injected into the fuel of an ICF capsule by hydrodynamic instabilities is controlled by the diffusion coefficient.


Interdiffusion Coefficient Lawrence Livermore National Laboratory Diffusion Velocity Static Structure Factor Velocity Autocorrelation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Paquette, C. Pelletier, G. Fontaine, and G. Michaud (preprint); G. Fontaine (this proceedings).Google Scholar
  2. 2.
    L. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience, New York 1956).MATHGoogle Scholar
  3. 3.
    Y. T. Lee and R. M. More, Phys. Fluids 27:1273 (1984).ADSMATHCrossRefGoogle Scholar
  4. 4.
    J. P. Hansen, F. Joly, and I. R. McDonald, Physica 132A:472 (1985).ADSGoogle Scholar
  5. 5.
    D. B. Boercker, A. J. Ladd, and E. L. Pollock, Lawrence Livermore National Laboratory Report No. UCID-20507, Livermore, CA, 1985.Google Scholar
  6. 6.
    J. P. Hansen and I. R. McDonald, Physics of Simple Liquids, (Academic, NY, 1976)Google Scholar
  7. 7.
    C. Cohen, J. Sutherland, and J. Deutch, Phys. Chem. Liq. 2:213 (1971).CrossRefGoogle Scholar
  8. 8.
    J. Hirschfelder, C. Curtis and R. Bird, Molecular Theory of Gases and Liquids, (John Wiley, New York, 1954).MATHGoogle Scholar
  9. 9.
    See, for instance, J. I. Castresana, G. F. Mazenko and S. Yip, Ann. Phys. (N.Y.) 103:1 (1977).ADSCrossRefGoogle Scholar
  10. 10.
    Note that kinetic energy is conserved only in the hydrodynamic limit k→0, z→0.Google Scholar
  11. 11.
    M. Baus, Physica 38A:319 (1977).ADSGoogle Scholar
  12. 12.
    This is equivalent to making a one Sonine polynomial approximation.Google Scholar
  13. 13.
    See, for instance, S. Ichimaru, Basic Principles of Plasma Physics (Academic, New York, 1973).Google Scholar
  14. 14.
    J. Wallenborn and M. Baus, Phys. Rev. A 18:1737 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    H. Gould and G. Mazenko, Phys. Rev. A 15:1274 (1977).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • David B. Boercker
    • 1
  1. 1.Lawrence Livermore National LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations