Advertisement

Gluon Condensation in Quark-Gluon Plasma

  • I. Lovas

Abstract

According to the generally accepted view, at high enough temperature or/and density a transition may take place from the hadronic phase of the matter into the quark-gluon plasma phase.1, 2 We hope that in high energy heavy-ion collisions there is a chance to reach that region of physical conditions where this phase transition is possible. How the plasma is produced and what kind of phase transitions takes place are questions of extreme interest. A number of approaches has been developed to estimate the temperature and the density of the transition.3,4,5 In the quark gluon plasma another phase transition, associated with the restoration of the chiral invariance is also expected.6We will assume that the transition from hadronic phase into the quark-gluon plasma is already accomplished and we will search for further possibilities of phase transitions of the plasma, applying the mean field approximation.

Keywords

Field Approximation Baryon Density Local Gauge Gluon Condensation Hadronic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.M. Polyakov, Phys. Lett.72B, 477 (1978).MathSciNetADSGoogle Scholar
  2. 2.
    L. Susskind, Phys. Rev.D20, 2610 (1979).Google Scholar
  3. 3.
    J. Kuti, B. Lukecs, J. Polonyi and K. Szlachenyi, Phys. Lett.95B, 75 (1980).ADSGoogle Scholar
  4. 4.
    J. Kuti, J. Polonyi and K. Szlachanyi, Phys. Lett.98B, 199 (1981).ADSGoogle Scholar
  5. 5.
    I. Montvay and E. Pietarinen, Phys. Lett.110B, 148 (1982), Phys. Lett. 115B, 151 (1982).CrossRefGoogle Scholar
  6. 6.
    R.D. Pisarski, Phys. Lett.110B, 155 (1982).ADSGoogle Scholar
  7. 7.
    R. Balian, J.M. Drouffe and C. Itzykson, Phys. Rev.D10, 3376 (1974).Google Scholar
  8. 8.
    J. Kogut and L. Susskind, Phys. Rev.D11, 995 (1975).ADSGoogle Scholar
  9. 9.
    S. Elitzur, Phys. Rev.D12, 3979 (1975).Google Scholar
  10. 10.
    I. Lovas, W. Greiner, P. Hrasko, E. Lovas and K. Sailer, Phys. Lett.156B, 255 (1985).ADSGoogle Scholar
  11. K. Sailer, W. Greiner and I. Lovas, Phys. Rev. (in press)Google Scholar
  12. 11.
    G.K. Saviddy, Phys. Lett.71B, 173 (1977).Google Scholar
  13. 12.
    N.K. Nielsen and P. Olesen, Nucl. Phys.B144, 376 (1978).Google Scholar
  14. 13.
    H.B. Nielsen and M. Ninomiye, Nucl. Phys.B156, 1 (1979).Google Scholar
  15. 14.
    J. Balog and A. Patkis, Phys. Lett.98B, 205 (1981).Google Scholar
  16. 15.
    L.S. Celenza and C.M. Shakin, Phys. Rev.D32, 1807 (1985).ADSGoogle Scholar
  17. 16.
    B. Banerjee, N.K. Glendenning, and M. Gyulassy, Nucl. Phys.A461, 326 (1981).Google Scholar
  18. 17.
    I. Lovas, J. Nimeth and K. Sailer, Phys. Lett.135B, 258 (1984).ADSGoogle Scholar
  19. 18.
    A.W. Overhauser, Phys. Rev.128, 1438 (1962).CrossRefGoogle Scholar
  20. 19.
    M. Noga, Nucl. Phys.B220, 185 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • I. Lovas
    • 1
  1. 1.Central Research Institute for PhysicsBudapestHungary

Personalised recommendations