Advertisement

Interference Effects in Quasimolecular Radiation and a Clock for Heavy Ion Nuclear Reactions

  • Itzhak Tserruya

Abstract

Quasimolecular radiation has been extensively studied both experimentally and theoretically during the last decade. The use of H-like ions at low velocities brings a new dimension to the study of quasimolecular K x-rays. The most important consequence is the observation of interference structures in the quasimolecular K xray spectra which result from the coherent sum of x-ray emission in the incoming and outgoing half of the trajectory. Using very simple assumptions it is possible to obtain, directly from the data, the quasimolecular orbital transition energy as a function of internuclear distance, thus opening the way for spectroscopic studies of quasimolecular orbitals in general. As an extension of this work we propose to use these interference structures as a clock to measure nuclear sticking times in heavy ion nuclear reactions. From calculations we expect the method to be sensitive to sticking times as short as 10-20s for collisions of Sn+Sn.

Keywords

Transition Energy Impact Parameter Internuclear Distance Coulomb Barrier Interference Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.R. MacDonald, M.D. Brown, and T. Chiao, Phys. Rev. Lett. 30, 471 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    See e.g. the recent review article by R. Anholt, Rev. Modern Phys. 57, 995 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    W. Pieper and W. Greiner, Z. Phys. 218, 327 (1969).ADSCrossRefGoogle Scholar
  4. 4.
    I. Tserruya, R. Schuch, H. Schmidt-Bocking, J. Barrette, Wang Da-Hai, B.M. Johnson, M. Meron, and K.W. Jones, Phys. Rev. Lett. 50, 30 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    R. Schuch, H. Schmidt-Bocking, I. Tserruya, B.M. Johnson, K.W. Jones, and M. Meron, Z. Phys. A320, 185 (1985).ADSGoogle Scholar
  6. 6.
    M. Meron, B.M. Johnson, K.W. Jones, R. Schuch, H. Schmidt-Böcking, and I. Tserruya, Nucl. Instrum. Methods B10 /11, 64 (1985).Google Scholar
  7. 7.
    R. Krieg, E. Bozek, U. Gollerthan, E. Kankeleit, G. Klotz-Engmann, M. Krämer, U. Meyer, H. Oeschler, and P. Senger, Phys. Rev. C. Submitted.Google Scholar
  8. 8.
    Ch. Stoller, M. Nessi, E. Morenzoni, W. Wölfli, W.E. Meyerhof, J.D. Molitoris, E. Grosse, and Ch. Michel, Phys. Rev. Lett. 53, 1329 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    J. Kirsch, B. Muller, and W. Greiner, UFTP preprint 154/1985.Google Scholar
  10. 10.
    F. Bell, H.D. Betz, H. Panke, E. Spindler, W. Stehling and M. Kleber, Phys. Rev. Lett. 35, 841 (1975).ADSCrossRefGoogle Scholar
  11. 11.
    H.D. Betz, F. Bell, H. Panke, W. Stehling, E. Spindler, and M. Kleber, Phys. Rev. Lett. 34, 1256 (1975).ADSCrossRefGoogle Scholar
  12. H. Schmidt-Böcking, R. Schuch, I. Tserruya, R. Schule, H.J. Specht, and K. Bethge, Z. Phys. A284, 39 (1978).ADSGoogle Scholar
  13. P. Vincent and J.S. Greenberg, J. Phys. B12, L641 (1979).ADSGoogle Scholar
  14. 12.
    I. Tserruya, H. Schmidt-Böcking, R. Schule, K. Bethge, R. Schuch, and H.J. Specht, Phys. Rev. Lett. 36, 1451 (1976).ADSCrossRefGoogle Scholar
  15. 13.
    H. Schmidt-Böcking, R. Anholt, R. Schuch, P. Vincent, K. Stiebing, and H.U. Jäger, J. Phys. B15, 3057 (1982).MathSciNetADSGoogle Scholar
  16. R. Schuch, G. Gaukler, G. Nolte, K.W. Jones, and B.M. Johnson, Phys. Rev. A22, 2513 (1980).ADSCrossRefGoogle Scholar
  17. 14.
    See ref. 2 for other attempts, in particular anisotropy measurements, to obtain spectroscopic information about quasimolecular orbitals.Google Scholar
  18. 15.
    H. Schmidt-Böcking, W. Lichtenberg, R. Schuch, J. Volpp, and I. Tserruya, Phys. Rev. Lett. 41, 859 (1978).ADSCrossRefGoogle Scholar
  19. 16.
    W. Lichten, Phys. Rev. A9, 1458 (1974).ADSGoogle Scholar
  20. B. Müller. In: “Proc. Ninth Int. Conf. on the Physics of Electronic and Atomic Collisions,” J.S. Risley and R. Geballe, eds., Univ. of Washington Press, Seattle (1976), p. 481.Google Scholar
  21. 17.
    J.H. Macek and J.S. Briggs, J. Phys. B7, 1312 (1974).ADSGoogle Scholar
  22. 18.
    P. Thieberger, J. Barrette, B.M. Johnson, K.W. Jones, M. Meron, and H.E. Wegner, IEEE Trans. Nucl. Sci. NS 30, 1431 (1983).ADSCrossRefGoogle Scholar
  23. 19.
    G. Gaukler, H. Schmidt-Böcking, R. Schuch, R. Schule, H.J. Specht, and I. Tserruya, Nucl. Instrum. Methods 141, 115 (1977).ADSCrossRefGoogle Scholar
  24. 20.
    R. Anholt — private communication.Google Scholar
  25. 21.
    R. Schuch — private communication.Google Scholar
  26. 22.
    See e.g. J.N.L. Connor and R.A. Marcus, J. Chem. Phys. 55, 5636 (1971).ADSCrossRefGoogle Scholar
  27. 23.
    K.H. Heinig, H.U. Jäger, H. Richter, H. Woittennek, W. Frank, P. Gippner, K.H. Kaun, and P. Manfrass, J. Phys. B10, 1321 (1977).ADSGoogle Scholar
  28. 24.
    B. Fricke, W.-D. Sepp, and T. Morovic, Z. Phys. A318, 369 (1984).ADSGoogle Scholar
  29. 25.
    J.S. Blair, P. Dyer, K.A. Snover, T.A. Trainer, Phys. Rev. Lett. 44, 1712 (1978).ADSCrossRefGoogle Scholar
  30. 26.
    R. Anholt, Z. Phys. A288, 257 (1978).ADSGoogle Scholar
  31. 27.
    J.P. Blocki, H. Feldmeier and W.J. Swiatecki, to be published in Nucl. Phys. A.Google Scholar
  32. 28.
    J.R. Nix, A.J. Sierk, H. Hofmann, F. Scheuter and D. Vautherin, Nucl. Phys. A424, 239 (1984).CrossRefGoogle Scholar
  33. 29.
    H. Schmidt-Böcking, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Itzhak Tserruya
    • 1
  1. 1.Department of Nuclear PhysicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations