Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 152))

Abstract

Since the pionneering work of Matthews and Blakeslee [1] on GaAs-GaAsP strained semiconductor superlattices, the improvement of the Molecular Beam Epitaxy (M.B.E.) and Metalorganic Vapor Phase Epitaxy (M.O.V.P.E.) has allowed the growth of numerous strained systems. This development is due to the potential interest of these structures for device applications. Their use broadens the choice of epitaxial materials on a given substrate by removing the drastic condition of lattice matching. In turn, the thicknesses of the sublayers must be kept small enough so that the mismatch can be elastically accomodated inside the structure. By adapting the design parameters of the superlattices, their band gap and mean lattice parameter can be independently varied in wide ranges [2]. Their ability to prevent the propagation of dislocations make it possible to grow good quality thick strained superlattices on a graded buffer layer matching this mean parameter. For the same reason, they constitute interesting buffer layers between two largely mismatched materials [3]. Moreover, the modifications of the properties of the grown semiconductors by the built-in strains they experience make them potentially useful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.W. Matthews and A.E. Blakeslee, J.Cryst.Growth 32:265 (1976), and references therein.

    Article  ADS  Google Scholar 

  2. G.C. Osbourn, J.Appl.Phys. 53:1586 (1982).

    Article  ADS  Google Scholar 

  3. R. Fisher, D. Neuman, H. Zabel, H. Morkoc, C. Choi and N. Otsuka, Appl.Phys.Lett. 48:1223 (1986).

    Article  ADS  Google Scholar 

  4. L. Goldstein, M. Quillec, E.V.K. Rao, P. Henoc, J.M. Masson and J.Y. Marzin, J.Phys. (Paris) 12, C5:201 (1982).

    Google Scholar 

  5. I.J. Fritz, L.R. Dawson, G.C. Osbourn, P.L. Gourley and R.M. Biefeld, Int.Phys.Conf.Ser. 65:241 (1982).

    Google Scholar 

  6. T.E. Zipperian, L.R. Dawson, G.C. Osbourn and I.J. Fritz, Proc. of EEE Int.Electron. Devices Meet. 696 (1983).

    Google Scholar 

  7. W.D. Laidig, P.J. Caldwell, Y.F. Lin and C.K. Peng, Appl.Phys.Lett. 43:560 (1983).

    Article  Google Scholar 

  8. W.D. Laidig, P.J. Caldwell and Y.F. Lin, J.Appl.Phys. 57:33 (1985).

    Article  ADS  Google Scholar 

  9. D.R. Myers, T.E. Zipperian, R.M. Biefeld and J.J. Wiczer, Proc. of IEEE Int. Elect. Devices Meet. 700 (1983).

    Google Scholar 

  10. L.R. Dawson, G.C. Osbourn, T.E. Zipperian, J.J. Wiczer, C.E. Barnes, I.J. Fritz and R.M. Biefeld, J.Vac.Sci.Technol. B2:179 (1984).

    Google Scholar 

  11. S.T. Picraux, L.R. Dawson, G.C. Osbourn, R.M. Biefeld and W.K. Chu, Appl.Phys.Lett. 43:1020 (1983).

    Article  ADS  Google Scholar 

  12. S.T. Picraux, L.R. Dawson, G.C. Osbourn and W.K. Chu, Appl.Phys.Lett. 43:930 (1983).

    Article  ADS  Google Scholar 

  13. M. Quillec, L. Goldstein, G. Le Roux, J. Burgeat and J. Primot, J.Appl.Phys. 55:2904 (1984).

    Article  ADS  Google Scholar 

  14. R. People and J.C. Bean, Appl.Phys.Lett. 47:322 (1985).

    Article  ADS  Google Scholar 

  15. J.H. Van der Merwe, J.Appl.Phys. 34:123 (1962).

    Article  Google Scholar 

  16. I.J. Fritz, S.T. Picraux, L.R. Dawson, T.J. Drummond, W.D. Laidig and N.G. Anderson, Appl.Phys.Lett. 46:967 (1985).

    Article  ADS  Google Scholar 

  17. F.K. Reinhart and E.A. Logan, J.Appl.Phys. 44:3171 (1973).

    Article  ADS  Google Scholar 

  18. J.F. Petroff, M. Sauvage, P. Riglet and H. Hashizume, Phil.Magaz. A42:319 (1980).

    Article  ADS  Google Scholar 

  19. M.C. Joncour, R. Mellet, M.N. Charasse and J. Burgeat, J.Cryst.Growth 75:295 (1986).

    Article  ADS  Google Scholar 

  20. Y.P. Khapachev, A.A. Dyshekov and D.S. Kiselev, Phys.Stat.Soli. B126:37 (1984).

    Article  ADS  Google Scholar 

  21. G.L. Bir and G.E. Pikus, “Symmetry and strain induced effects in semiconductors”, (Wiley, New York, 1974).

    Google Scholar 

  22. C.M. Chandrasekhar and F.H. Pollack, Phys.Rev. B15:2127 (1977).

    ADS  Google Scholar 

  23. G. Bastard, Phys.Rev. B24:5693 (1981).

    ADS  Google Scholar 

  24. S.R. White and L.J. Sham, Phys.Rev.Lett. 47:879 (1983).

    Article  ADS  Google Scholar 

  25. P. Voisin, G. Bastard and M. Voos, Phys.Rev. B29:935 (1984).

    ADS  Google Scholar 

  26. J.M. Luttinger, Phys.Rev. 102:1030 (1956).

    Article  ADS  MATH  Google Scholar 

  27. J.E. Schirber, I.J. Fritz and L.R. Dawson, Appl.Phys.Lett. 46:187 (1985).

    Article  ADS  Google Scholar 

  28. E.D. Jones, H. Ackermann, J.E. Schirber, T.J. Drummond, L.R. Dawson and I.J. Fritz, Solid State Comm. 55:525 (1985).

    Article  ADS  Google Scholar 

  29. M. Altarelli, U. Ekenberg and A. Fasolino, Phys.Rev. B32:5138 (1985), and references therein.

    ADS  Google Scholar 

  30. G.C. Osbourn, Superl. and Microst. 1:223 (1985).

    Article  ADS  Google Scholar 

  31. I.J. Fritz, T.J. Drummond, G.C. Osbourn, J.E. Schirber and E.D. Jones, Appl.Phys.Lett. 48:1678 (1986).

    Article  ADS  Google Scholar 

  32. J.Y. Marzin and E.V.K. Rao, Appl.Phys.Lett. 43:560 (1983).

    Article  ADS  Google Scholar 

  33. P.L. Gourley and R.M. Biefeld, Appl.Phys.Lett. 45:749 (1984).

    Article  ADS  Google Scholar 

  34. M.D. Camras, J.M. Brown, N. Holonyak, M.A. Nixon, R.W. Kaliski, M.J. Ludowise, W.T. Dietze and R.C. Lewis, J.Appl.Phys. 54:6183 (1983).

    Article  ADS  Google Scholar 

  35. M. Nakayama, K. Kubota, H. Kato and N. Sano, Solid State Comm. 51:343 (1984).

    Article  ADS  Google Scholar 

  36. H. Kato, M. Nakayama, S. Chika and N. Sano, Solid State Comm. 52:559 (1984).

    Article  ADS  Google Scholar 

  37. N.G. Anderson, W.D. Laidig and Y.F. Lin, J. Electron. Mater. 14:187 (1984).

    Article  ADS  Google Scholar 

  38. K. Kubota, T. Mizuta, M. Nakayama, H. Kato, N. Sano, Solid State Comm. 52:333 (1984).

    Article  ADS  Google Scholar 

  39. W.D. Laidig, D.K. Blanks and T.F. Scherzina, J.Appl.Phys. 56:1791 (1984).

    Article  ADS  Google Scholar 

  40. J.Y. Marzin, M.N. Charasse and B. Sermage, Phys.Rev. B31:8298 (1985).

    ADS  Google Scholar 

  41. N.G. Anderson, W.D. Laidig, G. Lee, Y. Lo and M. Ozturk in “Layered structures and Epitaxy”, J.M. Gibson and L.R. Dawson, editors, Material Research Society, Pittsburg (1985).

    Google Scholar 

  42. U. Das and P.K. Bhattacharya, J.Appl.Phys. 58:341 (1985).

    Article  ADS  Google Scholar 

  43. U. Das, P.K. Bhattacharya and S. Dhar, Appl.Phys.Lett. 48:1507 (1986).

    Article  ADS  Google Scholar 

  44. I.J. Fritz, B.L. Boyle, T.J. Drummond, R.M. Biefeld and G.C. Osbourn, Appl.Phys.Lett. 48:1606 (1986).

    Article  ADS  Google Scholar 

  45. G.C. Osbourn, Phys.Rev. B27:5126 (1983).

    ADS  Google Scholar 

  46. M. Quillec, J.Y. Marzin, J. Primot, G. Le Roux, J.L. Benchimol and J. Burgeat, J.Appl.Phys. 59:2447 (1986).

    Article  ADS  Google Scholar 

  47. M.C. Tamargo, R. Hull, H. Greene, J.R. Hayes and A.Y. Cho, Appl.Phys. Lett. 46:569 (1985).

    Article  ADS  Google Scholar 

  48. Y. Matsui, H. Hayashi, M. Takahashi, K. Kikushi and K. Yoshida, J.Cryst.Growth 71:280 (1985).

    Article  ADS  Google Scholar 

  49. Y. Matsui, H. Hayashi, K. Kikushi and K. Yoshida, 2nd Int.Conf. on Modulated Semicon. Structures, Kyoto 1985 (to be published in Surface Science 1986).

    Google Scholar 

  50. P. Voisin, M. Voos, J.Y. Marzin, M.C. Tamargo, R.E. Nahory and A.Y. Cho, Appl.Phys.Lett. 48:1476 (1986).

    Article  ADS  Google Scholar 

  51. W.J. Schaffer, M.D. Lind, S.P. Kowalczyk and R.W. Grant, J.Vac.Sci. Technol. B1:688 (1983).

    Google Scholar 

  52. B.F. Lewis, F.J. Grunthaner, A. Madhukar, R. Fernandez and J. Maserjian, J.Vac.Sci.Technol. B2:419 (1984).

    ADS  Google Scholar 

  53. R.A.A. Kubiak, E.H.C. Parker and S. Newstead, Appl.Phys. A35:61 (1984).

    ADS  Google Scholar 

  54. F.J. Grunthaner, M.Y. Yen, R. Fernandez, T.C. Lee, A. Madhukar and B.F. Lewis, Appl.Phys.Lett. 46:983 (1985).

    Article  ADS  Google Scholar 

  55. L. Goldstein, F. Glas, J.Y. Marzin, M.N. Charasse and G. Le Roux, Appl.Phys.Lett. 47:1099 (1985).

    Article  ADS  Google Scholar 

  56. H. Terauchi, K. Kamigaki, H. Sakashita, N. Sano, H. Kato and M. Nakayama, 2nd Int. Conf. on Modulated Semicon. Structures, Kyoto 1985 (to be published in Surface Science 1986).

    Google Scholar 

  57. M:Y. Yen, A. Madhukar, B.F. Lewis, R. Fernandez and J.F. Grunthaner, 2nd Int. Conf. on Modulated Semicon. Structures, Kyoto 1985 (to be published in Surface Science 1986).

    Google Scholar 

  58. F. Houzay, C. Guille, J.M. Moison, P. Henoc and F. Barthe, 4th Int. Conf. on Molecular Beam Epitaxy, York 1986 (to be published in J.Cryst.Growth).

    Google Scholar 

  59. C. d’Anterroches, J.Y. Marzin, G. Le Roux and L. Goldstein, 4th Int. Conf. on Molecular Beam Epitaxy, York 1986 (to be published in J.Cryst.Growth).

    Google Scholar 

  60. J.Y. Marzin, L. Goldstein, F. Glas and M. Quillec, 2nd Int. Conf. on Modulated Semicon. Structures, Kyoto 1985 (to be published in Surface Science 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Marzin, JY. (1987). Strained Layer Superlattices of GaInAs-GaAs. In: Sotomayor Torres, C.M., Portal, J.C., Maan, J.C., Stradling, R.A. (eds) Optical Properties of Narrow-Gap Low-Dimensional Structures. NATO ASI Series, vol 152. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1879-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1879-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9047-6

  • Online ISBN: 978-1-4613-1879-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics