Optical Properties of InAs-GaSb Superlattices Under Hydrostatic Pressure

  • J. C. Maan
Part of the NATO ASI Series book series (NSSB, volume 152)


At the interface between InAs and GaSb the GaSb valence band is 150 meV higher than the InAs conduction band. This fact leads for certain thicknesses of the layers of InAs and GaSb in superlattices to an electron subband at lower energy than a hole like subband. By means of hydrostatic pressure this arrangement can be inverted. The energy difference between these bands, measured by magneto-optical means, as a function of hydrostatic pressure, allows to determine the pressure dependence of the band offset. It is found that the InAs conduction band increases at a rate of 5.6meV/kbar with respect to the GaSb valence band, implying a pressure dependence of the valence band offset. Furthermore the results of the pressure dependence show a gradual transition from interband to intraband like character resulting from the band-mixing, which shows up clearly in this experiment.


Valence Band Hydrostatic Pressure Band Edge Pressure Dependence Landau Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.A. Sai-Halasz, R. Tsu, L. Esaki, Appl.Phys.Lett. 30:651 (1977).ADSCrossRefGoogle Scholar
  2. 2.
    H. Sakaki, L.L. Chang, G.A. Sai-Halasz, C.A. Chang, L. Esaki, Solid State Commun. 26:589 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    G.A. Sai-Halasz, L.L. Chang, J.M. Welter, C.A. Chang, L. Esaki, Solid State Commun. 27:935 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    L.L. Chang, L. Esaki, Surface Sci. 98:70 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    J.C. Maan, “Infrared and Millimetre waves”, edited by K.J. Button (Academic Press, New York), Vol. 8, Ch. 9 (1982).Google Scholar
  6. 6.
    M. Altarelli and references therein, this volume.Google Scholar
  7. 7.
    G. Bastard and references therein, this volume.Google Scholar
  8. 8.
    G. Martinez, “Handbook of semiconductors”, edited by M. Balkanski (North Holland, Amsterdam), Vol. 2, p. 132 (1980).Google Scholar
  9. 9.
    A. Fasolino, M. Altarelli, Surface Sci. 142:322 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Guldner, J.P. Vieren, P. Voisin, M. Voos, L.L. Chang, L. Esaki, Phys.Rev.Lett. 45:1719 (1981).ADSCrossRefGoogle Scholar
  11. 11.
    J.C. Maan, Y. Guldner, J.P. Vieren, P. Voisin, M. Voos, L.L. Chang, L. Esaki, Solid State Commun. 39:683 (1981).ADSCrossRefGoogle Scholar
  12. 12.
    W.A. Harrison, J.Vac.Sci.Technol. 14:1016 (1977).ADSCrossRefGoogle Scholar
  13. 13.
    W.A. Harrison, “Electronic Structure and the Properties of Solids”, (W.H. Freeman and Cy., San Francisco), 1980.Google Scholar
  14. 14.
    M. Altarelli, J. of Luminescence 30:472 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    R.L. Anderson, Solid State Electron. 5:341 (1962).ADSCrossRefGoogle Scholar
  16. 16.
    W.R. Frensley, H. Kroemer, Phys.Rev. B16:2642 (1977).ADSGoogle Scholar
  17. 17.
    M.L. Cohen, Adv.Electron.Phys. 51:1 (1980).ADSGoogle Scholar
  18. 18.
    J.M. Langer, H. Heinrich, Phys.Rev.Lett. 55:1414 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    F. Flores, C. Tejedor, J.Phys. C12:731 (1979).ADSGoogle Scholar
  20. 20.
    J. Tersoff, Phys.Rev. B30:4874 (1984).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. C. Maan
    • 1
  1. 1.Hochfeld MagnetlaborMax Planck Institut für FestkörperforschungGrenoble CedexFrance

Personalised recommendations