Optical, Magneto-Optical and Transport Investigations of the Narrow-Gap System InAsx Sb1-x

  • F. Kuchar
  • Z. Wasilewski
  • R. A. Stradling
  • R. J. Wagner
Part of the NATO ASI Series book series (NSSB, volume 152)

Abstract

Mixed crystals of III-V semiconducting compounds are of considerable interest as regards their fundamental properties as wells as applications in electronic and optoelectronic devices. One of the fundamental properties of a semiconductor — the minimum optical bandgap — is usually smaller in the mixed crystals than the concentration weighted average of the binary constituents (“bandgap bowing”). In the mixed crystal system InAsxSb1-x with 0<x<0.7 the bandgap exhibits values which are smaller than at x=0 being the smallest values appearing in III–V semiconductors.1 At x=0.4 the energy gap is 0.1 eV at 300K, increasing to 0.15 eV at OK. This property makes the mixed crystals with low x values extremely interesting as detectors for the 8–12µm spectral range (atmospheric window). The compound with x=0.91 (εG=0.33eV at T=77K) has potential applications for another atmospheric window between 3 and 5 µm and for fiber-optics communications at relatively long wavelenghts. It can be grown lattice matched on GaSb. In such narrow-gap semiconductors, the conduction-electron parameter most directly related to the band gap is the effective mass which can be deduced from far-infrared magneto-optical spectra.

Keywords

Zinc Helium Brittleness Sapphire Chalcopyrite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.M.Coderre and J.C.Woolley, Can.J.Phys.46:1207 (1968)ADSCrossRefGoogle Scholar
  2. 1a.
    W.M.Coderre and J.C.Woolley, J.Phys.Chem. Solids 32 (supplement 1): 535 (1971).Google Scholar
  3. 2.
    A.R.Clawson, Thin Solid Films 12:291 (1972).ADSCrossRefGoogle Scholar
  4. 3.
    H.H.Wieder and A.R.Clawson, Thin Solid Films 15:217 (1973).ADSCrossRefGoogle Scholar
  5. 4.
    W.M.Coderre and J.C.Woolley, Can.J.Phys. 46:1207 (1968).ADSCrossRefGoogle Scholar
  6. 5.
    N.N.Sirota and E.I.Bolvanovich, Doklady Akd.Nauk B.SS.R. 11:593 (1967).Google Scholar
  7. 6.
    G.B.Stringfellow and P.E.Greene, J.Electrochem.Soc. 118:805 (1971).CrossRefGoogle Scholar
  8. 7.
    J.R.Skelton and J.R.Knight, Solid Sate Electr. 28:1166 (1985).ADSCrossRefGoogle Scholar
  9. 8.
    P.K.Chiang and S.M.Bedair, J.Electrochem.Soc. 131:2422 ((1984).ADSCrossRefGoogle Scholar
  10. 9.
    T.Fukui and Y.Horikoshi, Jpn.J.Appl.Phys. 19:L53 (1980).ADSCrossRefGoogle Scholar
  11. 10.
    W.T.Tsang, T.H.Chiu, D.W.Kisker, and J.A.Ditzenberger, Appl.Phys.Letters 46:283 (1985).ADSCrossRefGoogle Scholar
  12. 11.
    G.S.Lee, Y.Lo, Y.F.Lin, S.M.Bedair, and W.D.Laidig, Appl.Phys.Letters 47:1219 (1985).ADSCrossRefGoogle Scholar
  13. 12.
    A.R.Clawson (private communication).Google Scholar
  14. 13.
    M.Hass and B.W.Henvis, J.Phys.Chem.Solids 23:1099 (1962).ADSCrossRefGoogle Scholar
  15. 14.
    D.R.Lovett, “Semimetals and Narrow-BAndgap Semiconductors”, Pion Ltd., London (1977).Google Scholar
  16. 15.
    J.C.Woolley and J.Warner, CanJ.Phys.42:1879 (1964).ADSCrossRefGoogle Scholar
  17. 16.
    S.S.Vishnubhatla, B.Eyglunent, and J.C.Woolley, Can.J.Phys.47:1661 (1969).ADSCrossRefGoogle Scholar
  18. 17.
    O.Berolo and J.C.Woolley, Proc.11th Int.Conf .Phys.Semicond. Warsaw (Polish Scientific Publishers, 1972), p.1420.Google Scholar
  19. 18.
    M.B.Thomas and J.C. Woolley, Can.J.Phys.49:2052 (1971).ADSCrossRefGoogle Scholar
  20. 19.
    E.H.van Tongerloo and J.C.Woolley, Can.J.Phys. 46:1199 (1968).ADSCrossRefGoogle Scholar
  21. 20.
    M.J.Aubin and J.C.Woolley, Can.J.Phys. 46:1191 (1968).ADSCrossRefGoogle Scholar
  22. 21.
    J.A.Van Vechten and T.K.Bergstresser, Phys.Rev.B:3351 (1970).Google Scholar
  23. 22.
    O.Berolo, J.C. Woolley, and J.A.Van Vechten, Phys.Rev.B8:3794 (1973).ADSGoogle Scholar
  24. 23.
    E.D.Siggia, Phys.Rev.B10:5147 (1974).ADSGoogle Scholar
  25. 24.
    C.Hermann and C.Weisbuch, Phys.Rev.B15:816, 823 (1977).ADSGoogle Scholar
  26. 25.
    R.J.Nicholas, R.A.Stradling, and J.C.Ramage, J.Phys.C12:1641 (1979).ADSGoogle Scholar
  27. 26.
    A.Zunger and J.E.Jaffe, Phys.Rev.Letters 51:662 (1983).ADSCrossRefGoogle Scholar
  28. 27a.
    A.ff.Chen and A.Sher, Phys.Rev.Letters 40:900 (1978)ADSCrossRefGoogle Scholar
  29. 27a.
    A.ff.Chen and A.Sher, Phys.Rev.B23: 5360 (1981).ADSGoogle Scholar
  30. 28.
    J.C.Mikkelsen and J.B.Boyce, Phys.Rev.Letters 49:1412 (1983).ADSCrossRefGoogle Scholar
  31. 29.
    R.J.Nicholas, R.A.Stradling, J.C.Portal, and S.Askenazy, J.Phys.Cl2: 1653 (1979).ADSGoogle Scholar
  32. 30.
    See the review by B.D.McCombe and R.J.Wagner, Adv.in Electronics and Electron Physics 37:1, 38:1 (1975).CrossRefGoogle Scholar
  33. 31.
    S.Porowski, L.Konczewicz, A.Raymond, R.L.Aulombard, J.L.Robert, and M.Baj, Springer Lecture Notes in Physics 177:357 (1983).ADSCrossRefGoogle Scholar
  34. 32.
    Z.Wasilewski, A.M.Davidson, R.A.Stradling, and S.Porowski, Ref.31, p.233.Google Scholar
  35. 33.
    M.Kriechbaum, Physica 117B&118B:444 (1983) and private communication.Google Scholar
  36. 34.
    B.Rabin, C.Scharager, M.Hage-Ali, O.Siffert, F.V.Wald, and R.O.Bell, Phys.Stat.Sol.(a)62:237 (1980).ADSCrossRefGoogle Scholar
  37. 35.
    R.G.van Welzenis and B.K.Ridley , Solid State Electron.27:113 (1984).ADSCrossRefGoogle Scholar
  38. 36.
    T.Swank, Phys.Rev. 153:844 (1967).ADSCrossRefGoogle Scholar
  39. 37.
    S.Haneman, J.Phys.Chem.Solids 11:205 (1959).ADSCrossRefGoogle Scholar
  40. 38.
    W.A.Harrison, in Springer Series in Solid State Sciences (ed.G.Bauer, F.Kuchar, and H.Heinrich) 67:62 (1986).Google Scholar
  41. 39.
    H.Heinrich and J.M.Langer, Ref.38, p.83.Google Scholar
  42. 40.
    See papers cited in Ref.41.Google Scholar
  43. 41.
    G.M.Williams, C.R.Whitehouse, N.G.Chew, G.W.Blackmore, and A.G.Cullis, J.Vac.Sci.Technol. B3:704 (1985).Google Scholar
  44. 42.
    G.C.Osbourn, J.Vac.Sci.Technol. B2:176 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • F. Kuchar
    • 1
  • Z. Wasilewski
    • 2
  • R. A. Stradling
    • 3
  • R. J. Wagner
    • 4
  1. 1.Inst.f.FestkörperphysikUniversity and L.Boltzmann-InstitutViennaAustria
  2. 2.High Pressure Research CenterWarsawPoland
  3. 3.Physics DepartmentImperial CollegeLondonEngland
  4. 4.Naval Research LaboratoryUSA

Personalised recommendations