Advertisement

Thermally Stimulated Current Studies of Transitions in Amorphous Polymers

  • A. Bernes
  • R. F. Boyer
  • D. Chatain
  • C. Lacabanne
  • J. P. Ibar

Abstract

Thermally Stimulated Current (TSC) studies allow us to investigate the transition spectra of amorphous polymers. The relaxation modes observed around and above the glass transition (T g ) have common features: (1) The TSC peak isolated around T g corresponds to a distribution of relaxation times following an Arrhenius equation. The width of the distribution characterizes the distribution of the order parameter. (2) The TSC peak observed some 50° above T g is well described by a Fulcher-Vogel equation. This mode, which can also be distributed, has been associated with the dielectric manifestation of the liquid-liquid transition (T ll ).

The influence of several parameters on the transition spectra (molecular weight, chemical structure, and metastability) has been followed.

Influence of Molecular Weight Polyisobutylene has been taken as an example. For samples of molecular weight M w > 9,300, the temperature positions of the TSC peaks associated with T g and T w are practically constant, as in other “non-flow techniques” such as adiabatic or differential scanning calorimetry. Influence of Chemical Structure Poly(cyclohexyl methacrylate) has been chosen as a model. In this case, the analysis of the T u peak shows a significant increase in the thermal expansion coefficient. This result is coherent with thermal expansivity data from Simha et al. It is attributed to the bulkiness of the side group resulting in a larger excluded volume. Influence of Meiastability Metasiability has been induced in polystyrene by applying static pressure or “Rheomolding®.” These treatments are accompanied by a spectacular decrease in the T critical temperature. This evolution is indicative of low temperature mobility.

Keywords

Glass Transition Amorphous Polymer Relaxation Mode Thermally Stimulate Current Adiabatic Calorimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Bucci and R. Fieschi, Phys. Rev. Lett. 12, 16–19 (1964).CrossRefGoogle Scholar
  2. 2.
    J. Vanderschueren, Ph.D. Thesis, University of Liege, Belgium, 1974.Google Scholar
  3. 3.
    C. Lacabanne, Ph.D. Thesis, University of Toulouse, France, 1974.Google Scholar
  4. 4.
    D. Chatain, Ph.D. Thesis, University of Toulouse, France, 1974.Google Scholar
  5. 5.
    J. van Turnhout, “Thermally Stimulated Discharge of Polymer Electrets ,” Elsevier, New York, 1975.Google Scholar
  6. 6.
    P. Hedvig, “Dielectric Spectroscopy of Polymers” A. Hilger, Ed. Bristol, United Kingdom, 1977.Google Scholar
  7. 7.
    International Workshop on “Thermally Stimulated Processes,” Montpellier, France, June 22–25, 1976.Google Scholar
  8. 8.
    Y. Wada, M.M. Perlman, and H. Hokado, “Charge Storage, Charge Transport, and Electrostatics with their Applications ” Elsevier, Amsterdam, 1979.Google Scholar
  9. 9.
    P. Braunlich, “Thermally Stimulated Relaxation in Solids,” Springer-Verlag, Berlin, 37, (1979).Google Scholar
  10. 10.
    R. Chen and Y. Kirsh, “Analysis of Thermally Stimulated Processes,” Pergamon Press, Oxford, 1981.Google Scholar
  11. 11.
    D. Jostopoulos, P. Varotsos, and S. Mourikis, J. Phys. C, Solid State ,13, 3303–3309 (1980).Google Scholar
  12. 12.
    R.J. Cava, R.H. Fleming, E.A. Rietman, P.G. Dunn, and L.F. Scheenmeyer, Phys. Rev. Lett. 53, 1677–1680 (1984).CrossRefGoogle Scholar
  13. 13.
    R. Muccilo and L.L. Campos, Phys. Stat. Sol. A ,52, K183–187 (1980).CrossRefGoogle Scholar
  14. 14.
    HJ. von Bardeleben, C. Sehwab, C. Scharager, J.C. Muller, P. Siffert, and R.S. Feigelson, Phys. Stat. Sol. A ,58, 143–148 (1980).CrossRefGoogle Scholar
  15. 15.
    C.-M. Hong and D.E. Day, J. Mater. Sci. 14, 2493–2499 (1979).CrossRefGoogle Scholar
  16. 16.
    C.-M. Hong and D.E. Day, J. Appl. Phys. 50, 5352–5355 (1979).CrossRefGoogle Scholar
  17. 17.
    F. Ehrburger and J.-B. Donnet, J. Appl. Phys. 50, 1478–1485 (1979).CrossRefGoogle Scholar
  18. 18.
    A. de Polignac, M. Jourdain, and J. Despuyols, Thin Solid Films ,71, 201–208 (1980).CrossRefGoogle Scholar
  19. 19.
    B. Despax, B. Ai, M. Abdulla, and C. Huraux, Appl. Phys. Lett. 39, 220–222 (1981).CrossRefGoogle Scholar
  20. 20.
    R.J. Heitz and H. Szwarc, Rev. Phys. Appl. 15, 687–696 (1980).Google Scholar
  21. 21.
    M. Zielinski and M. Kryszewski, Phys. Stat. Sol. A ,42, 305–314 (1977).CrossRefGoogle Scholar
  22. 22.
    J. Vanderschueren, A. Linkens, J. Gasiot, J.P. Fillard, and P. Parot, J. Appl. Phys. 51, 4967–4975 (1980).CrossRefGoogle Scholar
  23. 23.
    S. Mashimo, J. Polym. Sci. Polym. Phys. Ed. 19, 213–219 (1981).CrossRefGoogle Scholar
  24. 24.
    K. Shindo, Rep. Prog. Polym. Phys. Jpn. 27, 419–420 (1984).Google Scholar
  25. 25.
    S. Nakamura, G. Sawa, and M. Ieda, Jpn. J. Appl. Phys. 18, 917–925 (1979).CrossRefGoogle Scholar
  26. 26.
    S. Kobyashi and K. Yahagi, Jpn. J. Appl. Phys. 18, 261–268 (1979).CrossRefGoogle Scholar
  27. 27.
    T. Mizutani, T. Tsukahara, and M. Ieda, Jpn. J. Appl. Phys. 19, 2095–2098 (1980).CrossRefGoogle Scholar
  28. 28.
    M. Jarrigeon, B. Chabert, D. Chatain, C. Lacabanne, and G. Nemoz, J. Macromol. Sci. Phys.,B17 ,1–24 (1980).Google Scholar
  29. 29.
    B. Ai, C. Popescu-Stoka, H.T. Giam, and P. Destruel, Appl. Phys. Lett. 34, 821–823 (1979).CrossRefGoogle Scholar
  30. 30.
    K. Yoshimo, T. Sakai, Y. Yamamoto, and Y. Inuishi, Jpn. J. Appl. Phys. 20, 867–870 (1981).CrossRefGoogle Scholar
  31. 31.
    T. Mizutani, T. Yamala, and M. Ieda, J. Phys. D, Appl Phys. 14, 1139–1147 (1981).CrossRefGoogle Scholar
  32. 32.
    T. El Sayed, Ph.D. Thesis, University of Toulouse, France, 1983.Google Scholar
  33. 33.
    P. Audren, M.S. Thesis, University of Rennes, France, 1983.Google Scholar
  34. 34.
    P.K.C. Pillai, T.C. Goel, and S.F. Xavier, Eur. Polym. J. 15, 1149–1153 (1979).CrossRefGoogle Scholar
  35. 35.
    J. Vanderschueren, A. Janssens, M. Ladang, and J. Niezette, Polymer ,23, 395–400 (1982).CrossRefGoogle Scholar
  36. 36.
    P. Demont, M.S. Thesis, University of Toulouse, France, 1982.Google Scholar
  37. 37.
    D. Ronarc’h, Ph.D. Thesis, University of Toulouse, France, 1983.Google Scholar
  38. 38.
    P. Demont, D. Chatain, C. Lacabanne, J.L. Moura, and D. Ronarc’h, Polym. Eng. Sci. 24, 127–134(1984).CrossRefGoogle Scholar
  39. 39.
    P.K.C. Pillai and Rashmi, J. Polym. Sci. Polym. Phys. Ed. 17, 1731–1739 (1979).CrossRefGoogle Scholar
  40. 40.
    W.-F.A. Su, S.H. Carr, and J.O. Brittain, J. Appl. Polym. Sci. 25, 1355–1363 (1980).CrossRefGoogle Scholar
  41. 41.
    T. Tanaka, S. Hayashi, S. Hirabayashi, and K. Shibayama, J. Appl. Phys. 49, 2490–2493 (1978).CrossRefGoogle Scholar
  42. 42.
    A.L. Kovarskii and V.N. Saprygin, Polymer ,23, 974–978 (1982).CrossRefGoogle Scholar
  43. 43.
    A. Chafai, M.S. Thesis, University of Toulouse, France, 1982.Google Scholar
  44. 44.
    A. Chafai, D. Chatain, J. Dugas, C. Lacabanne, and E. Vayssie, J. Macromol. Sci. Phys. B22(5&6), 633–643 (1983).Google Scholar
  45. 45.
    E. Vayssie, M.S. Thesis, University of Toulouse, France, 1983.Google Scholar
  46. 46.
    S.K. Shrivastava, J.D. Ranade, and A.P. Srivastava, Phys. Lett. 69A, 465–467 (1979).Google Scholar
  47. 47.
    P.C. Mehendru, J.P. Agrawal, K. Jain, and A.V.R. Warrier, Thin Solid Films ,78, 251–262 (1981).CrossRefGoogle Scholar
  48. 48.
    I.M. Talwar, H.C. Sinha, and A.P. Srivastava, Thin Solid Films ,113, 251–256 (1984).CrossRefGoogle Scholar
  49. 49.
    E. Foldes, T. Pazonyi, and P. Hedvig, J. Macromol. Sci. Phys. B15(4), 527–548 (1978).Google Scholar
  50. 50.
    J.P. Dechesne, J. Vanderschueren, and F. Jaminet, J. Pharm. Belg. 39, 341–347 (1984).Google Scholar
  51. 51.
    P.C. Mehendru, J.P. Agrawal, and K. Jain, Thin Solid Films ,71, L5–8 (1980).CrossRefGoogle Scholar
  52. 52.
    I. Diaconu and S.V. Dumitrescu, Eur. Polym. J. 14, 971–975 (1978).CrossRefGoogle Scholar
  53. 53.
    P. Goyaud, M.S. Thesis, University of Toulouse, France, 1979.Google Scholar
  54. 54.
    C. Lacabanne, P. Goyaud, and R.F. Boyer, J. Polym. Sci. Polym. Phys. Ed. 18, 277–284 (1980).CrossRefGoogle Scholar
  55. 55.
    S.K. Shrivastava, J.D. Ranade, and A.P. Srivastava, Thin Solid Films ,67, 201–206 (1980).CrossRefGoogle Scholar
  56. 56.
    J.K. Jeszka, J. Ulanski, I. Glowacki, and M. Kryszewski, J. Electrostatics ,16, 89–98 (1984).CrossRefGoogle Scholar
  57. 57.
    M. Kryszewski, M. Zielinski, and S. Sapieha, Polymer ,17, 212–216 (1976).CrossRefGoogle Scholar
  58. 58.
    K. Ohara and G. Rehage, Colloid Polym. Sci. 259, 318–325 (1981).CrossRefGoogle Scholar
  59. 59.
    J. Biros, T. Larina, J. Trekoval, and J. Pouchly, Colloid Polym. Sci. 260, 27–30 (1982).CrossRefGoogle Scholar
  60. 60.
    A. Gourari, M.S. Thesis, University of Algeria, 1982.Google Scholar
  61. 61.
    A. Gourari, M. Bendaoud, C. Lacabanne, and R.F. Boyer, J. Polym. Sci. Polym. Phys. Ed. 23, 889–916 (1985).CrossRefGoogle Scholar
  62. 62.
    J.M. Barandiaran, J.J. Del Val, J. Colmenero, C. Lacabanne, D. Chatain, J. Millan, and G. Martinez, J. Macromol. Sci. Phys. B22, 645–663 (1984).Google Scholar
  63. 63.
    Y. Aoki and J.O. Brittain, J. Polym. Sci. Polym. Phys. Ed. 14, 1297–1304 (1976).CrossRefGoogle Scholar
  64. 64.
    L. Guerdoux and E. Marchal, Polymer ,22, 1199–1204 (1981).CrossRefGoogle Scholar
  65. 65.
    G. Sawa, S. Nakamura, Y. Nishio, and M. Ieda, Jpn. J. Appl. Phys. 17, 1507–1511 (1978).CrossRefGoogle Scholar
  66. 66.
    J. Belana, P. Colomer, M. Pujal, and S. Montserrat, J. Macromol. Sci. Phys. in press.Google Scholar
  67. 67.
    Fifth International Symposium on Electrets, ISE 5 ,Heidelberg, Federal Republic of Germany, September 4–6, 1985.Google Scholar
  68. 68.
    C.T. Moynihan, P.B. Macedo, C.J. Montrose, P.K. Gupta, M.A. Debolt, J.F. Dill, B.E. Dom, P.W. Drake, A.J. Easteal, P.B. Elterman, R.P. Moeller, H. Sasabe, and J.A. Wilder, Ann. N. Y. Acad. Sci. 219, 15–35 (1976).CrossRefGoogle Scholar
  69. 69.
    A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson, and A.M. Ramos, J. Polym. Sci. Polym. Phys. Ed. 17, 1097–1162 (1979).CrossRefGoogle Scholar
  70. 70.
    C.N.R. Rao and K.J. Rao, “Phase Transitions in Solids,” McGraw-Hill, Chatham, New York, 1978.Google Scholar
  71. 71.
    S.E.B. Petrie, J. Polym. Sci. PartA-2,10, 1255–1272 (1972).CrossRefGoogle Scholar
  72. 72.
    H. Sasabe and C.T. Moynihan, J. Polym. Sci. Polym. Phys. Ed. 16, 1447–1457 (1978).CrossRefGoogle Scholar
  73. 73.
    W.M. Prest, Jr. R.C. Penwell, D.J. Luca, and F.J. Roberts, Jr. ACS Polym. Prepr. 21(2), 10–11 (1980).Google Scholar
  74. 74.
    J.J. Aklonis, ACS Polym. Prepr. 21(2), 1–2 (1980).Google Scholar
  75. 75.
    C. Lacabanne, D. Chatain, and J.C. Monpagens, J. Macromol. Sci. Phys. B13(4), 537–552 (1977).Google Scholar
  76. 76.
    R.F. Boyer, J. Macromol. Sci. Phys. B8(3–4), 503–537 (1973).Google Scholar
  77. 77.
    J.B. Enns and R.F. Boyer, ACS Org. Coat. Plast. Chem. Prepr. 38, 387–393 (1978).Google Scholar
  78. 78.
    R.F. Boyer, J. Macromol. Sci. Phys. B18(3), 461–553 (1980).Google Scholar
  79. 79.
    P.S. Wilson and R. Simha, Macromolecules ,6, 902–908 (1973).CrossRefGoogle Scholar
  80. 80.
    S.E. Keinath and R.F. Boyer, Soc. Plast. Eng. Tech. Pap. 30, 350–352 (1984).Google Scholar
  81. 81.
    D.L. Levi, Trans. Farad. Soc. 42A, 152–170 (1946).CrossRefGoogle Scholar
  82. 82.
    R.K. Eby, J. Chem. Phys. 37, 2785–2790 (1962).CrossRefGoogle Scholar
  83. 83.
    O. Exner, Coll. Czech. Chem. Commun. 29, 1094–1113 (1964).Google Scholar
  84. 84.
    G.R. Johnston and L.E. Lyons, Physica Status Solidi ,37K, 43–45 (1970).CrossRefGoogle Scholar
  85. 85.
    M.R. Boon, Nature ,243, 401 (1973).CrossRefGoogle Scholar
  86. 86.
    V.M. Gorbachev, J. Therm. Anal ,21, 129–132 (1981).Google Scholar
  87. 87.
    D. LeBotlan, T. Bertrand, B. Mechin, and G.J. Martin, Nouveau Journal de Chimie ,6, 107–115 (1982).Google Scholar
  88. 88.
    B. Rosenberg, B.B. Bhowmik, H.C. Harder, and E. Postow, J. Chem. Phys. 49, 4108–4114 (1968).CrossRefGoogle Scholar
  89. 89.
    G. Kemeny and S.D. Mahanii, Proc. Natl. Acad. Sci. USA ,72, 999–1002 (1975).CrossRefGoogle Scholar
  90. 90.
    M. Matsui, M. Nagasaka, and K. Yamagi, Jpn. J. Appl. Phys. 16, 177–178 (1977).CrossRefGoogle Scholar
  91. 91.
    A. Ghosh, K.M. Jain, B. Mallik, and T.N. Misra, Jpn. J. Appl. Phys. 20, 1059–1064 (1981).CrossRefGoogle Scholar
  92. 92.
    A.E. Pochtennyl and B. Ratnikov, Dokl. Acad. Nauk. USSR ,25, 896–898 (1981).Google Scholar
  93. 93.
    A.W. Lawson, J. Chem. Phys. 32, 131–132 (1960).CrossRefGoogle Scholar
  94. 94.
    J.Y. Moisan, Eur. Polym. J. 17, 857–864 (1981).CrossRefGoogle Scholar
  95. 95.
    K. Higasi, “Dielectric Relaxation and Molecular Structure,” Monogr. Ser. Res. Inst. Appl. Elec. Hokkaido Univ. Sapporo, Japan, 1961.Google Scholar
  96. 96.
    M. Zielinski, T. Swiderski, and M. Kryszewski, Polymer ,19, 883–888 (1978).CrossRefGoogle Scholar
  97. 97.
    T. Hino, IEEE Trans. Elec. Insul. EI 15, 301–311 (1980).CrossRefGoogle Scholar
  98. 98.
    H.A. Khanaja and S. Walker, Adv. Mol. Relax. Inter. Processes ,19, 1–20 (1981).CrossRefGoogle Scholar
  99. 99.
    N.G. McCrum, M. Pizzoli, C.K. Chai, I. Treurnicht, and J.M. Hutchinson, Polymer ,23, 473–475 (1982).CrossRefGoogle Scholar
  100. 100.
    N.G. McCrum, Polymer ,25, 299–308 (1984).CrossRefGoogle Scholar
  101. 101.
    J.C. Monpagens, C. Lacabanne, D. Chatain, A. Hiltner, and E. Baer, J. Macromol. Sci. Phys. 15(4), 503–518 (1978).CrossRefGoogle Scholar
  102. 102.
    C. Lacabanne, D. Chatain, T. ElSayed, D. Broussoux, and F. Micheron, Ferroelectrics ,30, 307–314 (1980).CrossRefGoogle Scholar
  103. 103.
    J. El Hout, M.S. Thesis, University of Toulouse, France, 1984.Google Scholar
  104. 104.
    J.D. Hoffman, G. Williams, and E. Passaglia, J. Polym. Sci. Part C ,14,173–235 (1966).Google Scholar
  105. 105.
    E. Peacock-Lopez and H. Suhl, Phys. Rev. B26, 3774–3782 (1982).Google Scholar
  106. 106.
    J.-P. Crine, J. Macromol. Sci. Phys. B23(2), 201–219 (1984).Google Scholar
  107. 107.
    A. Bernes, M.S. Thesis, University of Toulouse, France, 1985.Google Scholar
  108. 108.
    J.P. Ibar, Polym. Plast. Technol. Eng. 17(1), 11–44 (1981).CrossRefGoogle Scholar
  109. 109.
    J.P. Ibar, Polym. Commun. 24, 331–335 (1983).Google Scholar
  110. 110.
    J.P. Ibar, ACS Polym. Mater. Sci. Eng. Prepr. 52, 64–72 (1985).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • A. Bernes
    • 1
  • R. F. Boyer
    • 2
  • D. Chatain
    • 3
  • C. Lacabanne
    • 3
  • J. P. Ibar
    • 4
  1. 1.Solomat S.ABallainvilliersFrance
  2. 2.Michigan Molecular InstituteMidlandUSA
  3. 3.Laboratoire de Physique des Solides, Associe au C.N.R.S.Universite Paul SabatierToulouse CedexFrance
  4. 4.Solomat CorporationStamfordUSA

Personalised recommendations