Target Site Insensitivity in Insect-Plant Interactions

  • May R. Berenbaum


By acting as a selective source of mortality in insect populations, insecticides, both natural and man-made, have wrought extraordinary changes in the genetic composition and physiology of insects. Among these changes are several fundamentally different resistance mechanisms. One of the less well understood forms of resistance is target site insensitivity (TSI), defined as the failure of a toxicant to bind to the target due to alteration in the structure or accessibility of that target site (Brooks 1976). Studies of TSI have been severely hampered by the fact that, in order to understand TSI as a resistance mechanism, it is necessary first to know what the target site and mode of action are. This is decidedly not the case for the majority of plant allelochemicals; it is, however, true for a few synthetic organic insecticides, and the phenomenon of target site insensitivity was first discovered in connection with chemical control programs that ceased working.


Pyrethroid Resistance Monarch Butterfly Tobacco Hornworm Piperonyl Butoxide Metabolic Detoxification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anstee, J. and K. Bowler, 1976. Ouabain-sensitivity of insect epithelial tissues, Comp. Biochem. Physiol., 62A:763–769.Google Scholar
  2. Applebaum, S. W. and Y. Birk, 1979. Saponins, in: “Herbivores, Their Interaction with Secondary Plant Metabolites”, G. A. Rosenthal and D. H. Janzen, eds., pp. 539–566, Academic Press, New York.Google Scholar
  3. Barbosa, P. and J. Saunders, 1985. Plant allelochemicals: linkages between herbivores and their natural enemies. Rec. Adv. Phytochem., 19:107–137.Google Scholar
  4. Beesley, S., S. G. Compton, and D. Jones, 1985. Rhodanese in insects, J. Chem. Ecol., 11:45–50.CrossRefGoogle Scholar
  5. Berenbaum, M., 1985. Brementown revisited: interactions among allelochemicals in plants, Rec. Adv. Phytochem., 19:139–169.Google Scholar
  6. Berenbaum, M. and J. J. Neal, 1985. Synergism between myristicin and xanthotoxin, a naturally co-occurring plant toxicant, J. Chem. Ecol., 11:1349–1358.CrossRefGoogle Scholar
  7. Bowers, W. S., 1983. Phytochemical action on insect morphogenesis, reproduction and behavior, in: “Natural Products for Innovative Pest Management”, D. Whitehead and W. S. Bowers, eds., pp. 313–321, Pergamon Press, New York.Google Scholar
  8. Brattsten, L. B., 1979. Biochemical defense mechanism in herbivores against plant allelochemicals, in: “Herbivores, Their Interaction with Secondary Plant Metabolites”, pp. 199–271, Academic Press, New York.Google Scholar
  9. Brattsten, L. B., 1984. Presentation at the 17th International Congress of Entomology, Hamburg, Germany. August 1984.Google Scholar
  10. Brooks, G. T., 1976. Penetration and distribution of insecticides, in: “Insecticide Biochemistry and Physiology”, C. F. Wilkinson, ed., pp. 3–60, Plenum Publ. Corp., New York.Google Scholar
  11. Brower, L. P., P. McEvoy, K. Williamson, and M. Flannery, 1972. Variation in cardiac glycoside content of monarch butterflies from natural populations in eastern North America, Science, 177:426–429.PubMedCrossRefGoogle Scholar
  12. Brower, L. P., J. Seiber, C. Nelson, S. Lynch and P. Tuskes, 1982. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies, Danaus plexippus, reared on the milkweed, Asclepias eriocarpa in California, J. Chem. Ecol., 8:579–633.CrossRefGoogle Scholar
  13. Bull, D. L., G. W. Ivie, R. Beier, N. Prior and E. Oertli, 1984. Fate of photosensitizing furanocoumarins in tolerant and sensitive insects, J. Chem. Ecol., 10:893–911.CrossRefGoogle Scholar
  14. Busvine, J. R., 1951. Mechanism of resistance to insecticide in houseflies, Nature, 168:193–195.PubMedCrossRefGoogle Scholar
  15. Casida, J. E., 1970. Mixed-function oxidase involvement in the biochemistry of insecticide synergists, J. Agr. Food Chem., 18:753–760.CrossRefGoogle Scholar
  16. Chang, C. P. and F. W. Plapp, 1983. DDT and pyrethroids: receptor binding in relation to knockdown resistance (kdr) in the house fly, Pestic. Biochem. Physiol., 20:86–91.Google Scholar
  17. Chang, C. P. and F. W. Plapp, 1983. DDT and pyrethroids: receptor binding and mode of action in the house fly, Pestic. Biochem. Physiol., 20:76–85.Google Scholar
  18. Changeux, J. P., A. Devillers-Thiery, and P. Chemouilli, 1984. Acetylcholine receptor: an allosteric protein, Science, 225:1335–1345.PubMedCrossRefGoogle Scholar
  19. Chialiang, C. and A. L. Devonshire, 1982. Changes in membrane phospholipids, identified by Arrhenius plots of acetylcholinesterase and associated with pyrethroid resistance (kdr) in house flies (Musca domestica), Pestic. Sci., 13:156–160.CrossRefGoogle Scholar
  20. Conn, E. E., 1979. Cyanide and cyanogenic glycosides, in: “Herbivores, Their Interaction with Secondary Plant Metabolites”, G. A. Rosenthal and D. H. Janzen, eds., pp. 387–412, Academic Press, New York.Google Scholar
  21. Crosby, D. G. and M. Jacobson, 1971. “Naturally Occurring Insecticides”, Marcel Dekker Press, New York.Google Scholar
  22. Crow, J. F., 1952. Some genetic aspects of selection for resistance, in: “Conference on Insecticide Resistance and Insect Physiology”, Publ. No. 219, pp. 72–78, National Academy of Sciences National Research Council, Washington.Google Scholar
  23. Decker, G. C. and W. Bruce, 1952. Illinois Natural History Survey Research on House fly resistance to chemicals, in: “Conference on Insecticide Resistance and Insect Physiology”, Publ. No. 219, pp. 25–33, National Academy of Sciences National Research Council, Washington.Google Scholar
  24. Dimock, M. B., G. Kennedy, and W. Williams, 1982. Toxicity studies of analogs of 2-tridecanone, a naturally occurring toxicant from a wild tomato, J. Chem. Ecol., 8:837–842.CrossRefGoogle Scholar
  25. Devonshire, A. L. and G. Moore, 1984. Different forms of insensitive acetylcholinesterase in insecticide-resistant house flies (Musca domestica), Pestic. Biochem. Physiol., 21:336–340.CrossRefGoogle Scholar
  26. Duffey, S. S., 1980. Sequestration of plant natural products by insects. Annu. Rev. Entomol., 25:447–477.CrossRefGoogle Scholar
  27. Fairbairn, J. W., 1971. The alkaloids of hemlock (Conium maculatum L. or Conium maculatum L.: The odd man out), in_: “The Biology and Chemistry of the Umbelliferae”, V. Heywood, ed., Bot. J. Linn. Soc. 64 Suppl. 1:361–368.Google Scholar
  28. Freeland, W. and D. H. Janzen, 1974. Strategies in herbivory by mammals: the role of plant secondary compounds, Am. Nat., 108:269–289.CrossRefGoogle Scholar
  29. Gammon, W., 1980. Pyrethroid resistance in a strain of Spodoptera littoralis is correlated with decreased sensitivity of the CNS in vitro, Pestic. Biochem. Physiol., 13:53–57.CrossRefGoogle Scholar
  30. Georghiou, G. P., 1972. The evolution of resistance to pesticides, Annu. Rev. Ecol. Syst., 3:133–168.CrossRefGoogle Scholar
  31. Georghiou, G. P., 1983. Management of resistance in arthropods, in: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 769–792, Plenum Publ. Corp., New York.Google Scholar
  32. Georghiou, G. P. and R. Mellon, 1983. Pesticide resistance in time and space, in: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 1–46, Plenum Publ. Corp., New York.Google Scholar
  33. Georghiou, G. P. and T. Saito, eds., 1983. “Pest Resistance to Pesticides”, Plenum Publ. Corp., New York.Google Scholar
  34. Georghiou, G. P. and C. E. Taylor, 1976. Pesticide resistance as an evolutionary phenomenon, Proc. XV Int. Cong. Ent. 1976. 759–785.Google Scholar
  35. Granger, M. and C. Helene, 1983. Photoaddition of 8-methoxypsoralen to E. coli DNA polymerase. I. Role of psoralen photoadducts in the photosensitized alterations of pol I enzymatic activities, Photochem. Photobiol., 38:563–568.PubMedCrossRefGoogle Scholar
  36. Hall, F. R., R. Hollingsworth and D. Shankland, 1971. Cyanide tolerance in millipedes: the biochemical basis, Comp. Biochem. Physiol., 38B:723–737.Google Scholar
  37. Hama, H., 1983. Resistance to insecticides due to reduced sensitivity of acetylcholinesterase, in: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 299–332, Plenum Publ. Corp., New York.Google Scholar
  38. Ivie, G. W., D. Bull, R. Beier, N. Pryor, and E. Oertli, 1983. Metabolic detoxification: mechanism of insect resistance to plant psoralens, Science, 221:374–376.PubMedCrossRefGoogle Scholar
  39. Jackson, F. R., S. D. Wilson, and L. M. Hall, 1984. Two types of mutants affecting voltage-sensitive sodium channels in Drosophila melanogaster, Nature, 308:189–191.PubMedCrossRefGoogle Scholar
  40. Jacobson, M. and D. Crosby, 1971. “Naturally Occurring Insecticides”, Marcel Dekker, New York, 585 pp.Google Scholar
  41. Janzen, D. H., 1980. When is it coevolution? Evolution, 34:611–612.CrossRefGoogle Scholar
  42. Joshi, P. C. and M. Pathak, 1983. Production of singlet oxygen and superoxide radicals by psoralens, Biochem. Biophys. Res. Commun., 112:638–646.PubMedCrossRefGoogle Scholar
  43. Kagan, J. and G. Chan, 1983. The photoovicidal activity of plant components towards Drosophila melanogaster. Experientia, 39:402–403.CrossRefGoogle Scholar
  44. Levinson, H. Z., K. E. Kaissling and A. R. Levinson, 1973. Olfaction and cyanide sensitivity in the six spot burnet moth Zygaena filipendulae and the silk moth Bombyx mori, J. Comp. Physiol., 86:209–214.CrossRefGoogle Scholar
  45. Long, K. Y. and L. B. Brattsten, 1982. Is rhodanese important in the detoxification of cyanide in southern armyworm (Spodoptera eridania Cramer) larvae? Insect Biochem., 12:367–375.CrossRefGoogle Scholar
  46. Lund, A. E., 1985. Insecticides: effects on the nervous system, in: “Comprehensive Insect Physiology, Biochemistry and Pharmacology”, G. A. Kerkut and L. I. Gilbert, eds., Vol. 12, pp. 9–56, Pergamon Press, New York.Google Scholar
  47. Mabry, T. and J. Gill, 1979. Sesquiterpene lactones and other terpenoids, in: “Herbivores, Their Interaction with Secondary Plant Metabolites”, G. A. Rosenthal and D. H. Janzen, eds., pp. 501–537, Academic Press, New York.Google Scholar
  48. Marty, M. and R. I. Krieger, 1984. Metabolism of uscharidin, a milkweed cardenolide, by tissue homogenates of monarch butterfly larvae, Danaus plexippus, J. Chem. Ecol., 10:945–956.CrossRefGoogle Scholar
  49. Matsumura, F., 1976. “Toxicology of Insecticides”, Plenum Publ. Corp., New York, 503 pp.Google Scholar
  50. Matsumura, F., 1983. Penetration, binding and target insensitivity as causes of resistance to chlorinated hydrocarbon insecticides, in: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 376–386, Plenum Publ. Corp., New York.Google Scholar
  51. Meredith, J., L. Moore, and G. G. E. Scudder, 1984. The excretion of ouabain by the Malpighian tubules of O. fasciatus. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 15):R705–R715.PubMedGoogle Scholar
  52. Metcalf, R. L. and R. B. March, 1950. Properties of acetylcholine esterases from the bee, the fly, and the mouse and their relation to insecticide action, J. Econ. Entomol., 43:670–677.Google Scholar
  53. Miller, T. A., J. Kennedy and C. Collins, 1979. CNS insensitivity to pyrethroids in the resistant kdr strain of house flies, Pestic. Biochem. Physiol., 12:224–230.CrossRefGoogle Scholar
  54. Miller, T. A., V. L. Salgado and S. Irving, 1983. The kdr factor in pyrethroid resistance, in: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 376–386, Plenum Publ. Corp., New York.Google Scholar
  55. Moore, L. V. and G. G. E. Scudder, 1986. Ouabain resistant Na, K-ATPases and cardenolide tolerance in the large milkweed bug, Oncopeltus fasciatus. J. Insect Physiol., 32:27–33.CrossRefGoogle Scholar
  56. Morris, C. E., 1984. Electrophysiological effects of cholinergic agents in the central nervous system of a nicotine-resistant insect, the tobacco hornworm (Manduca sexta), J. Exp. Zool., 229:361–374.CrossRefGoogle Scholar
  57. Murray, R. D. H., J. Mendez and S. A. Brown, 1982. “The Natural Coumarins”, J. Wiley and Sons, Ltd., Chichester.Google Scholar
  58. Nahrstedt, A. and R. H. Daves, 1981. Occurrence of the cyanoglucosides, linamarin and lotaustralin, in Acrea and Heliconius butterflies, Comp. Biochem. Physiol., 68(B):575–578.Google Scholar
  59. Narahashi, T., 1983. Resistance to insecticides due to reduced sensitivity of the nervous system, In: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 376–386, Plenum Publ. Corp., New York.Google Scholar
  60. Nelson, C. J., J. Seiber, and L. P. Brower, 1981. Seasonal and intraplant variation of cardenolide content in the California milkweed, Asclepias eriocarpa, and implications for plant defense, J. Chem. Ecol., 7:981–1010.CrossRefGoogle Scholar
  61. Osborne, M. P. and A. Smallcombe, 1983. Site of action of pyrethroid insecticides in neuronal membranes as revealed by the kdr resistance factor. in: “Mode of Action, Metabolism and Toxicology”, S. Matsunaka, D. Hutson and S. Murphy, eds., Vol. 3 of Pesticide Chemistry: Human Welfare and the Environment, pp. 103–107, Pergamon Press, New York.Google Scholar
  62. Pascoe, D., 1983. “Toxicology”, E. Arnold and Co., London.Google Scholar
  63. Pearlman, D. A., S. R. Holbrook, D. Pirkle and S. H. Kim, 1985. Molecular models for DNA damage by photoreaction. Science, 227:1304–1308.PubMedCrossRefGoogle Scholar
  64. Plapp, F. W., 1974. Biochemical genetics of insecticide resistance, Annu. Rev. Entomol., 21:179–197.CrossRefGoogle Scholar
  65. Plapp, F. W. and T. C. Wang, 1983. Genetic origins of insecticide resistance, in: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 376–386, Plenum Publ. Corp., New York.Google Scholar
  66. Poppe, W. and L. Grossweiner, 1975. Photodynamic sensitization by 8-methoxypsoralen via the singlet oxygen mechanism, Photochem. Photobiol., 22:217–222.PubMedCrossRefGoogle Scholar
  67. Proksch, P., M. Proksch, G. H. N. Towers, and E. Rodriguez, 1983. Phototoxic and insecticidal activities of chromenes and benzofurans from Encelia, J. Nat. Prod., 46:331–334.CrossRefGoogle Scholar
  68. Quay, G. H., 1916. Are scales becoming resistant to fumigation? Cal. Univ. J. Agr., 3:333–334, 358.Google Scholar
  69. Rosenthal, G. A. and D. L. Dahlman, 1975. Non-protein amino acid-insect interactions II. Effects of canaline on growth and development of the tobacco hornworm, Manduca sexta L. (Sphingidae), Comp. Biochem. Physiol., 52A:105–108.CrossRefGoogle Scholar
  70. Rosenthal, G. A., D. L. Dahlman, and D. H. Janzen, 1976. A novel means for dealing with L-canavanine, a toxic metabolite, Science, 192:256–258.PubMedCrossRefGoogle Scholar
  71. Scudder, G. G. E., L. Moore and M. B. Isman, 1986. Sequestration of cardenolides in Oncopeltus fasciatus: morphological and physiological adaptations, J. Chem. Ecol., 13: in press.Google Scholar
  72. Scudder, G. E. and J. Meredith, 1982. The permeability of the midgut of three insects to glycosides, J. Insect Physiol., 28:689–694.CrossRefGoogle Scholar
  73. Self, L. S., F. Guthrie and E. Hodgson, 1964. Adaptation of tobacco hornworms to the ingestion of nicotine, J. Insect Physiol., 12:224–230.Google Scholar
  74. Smissaert, H. R., 1964. Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate, Science, 143:129–131.PubMedCrossRefGoogle Scholar
  75. Soderlund, D. M., S. M. Guiasuddin, and D. W. Helmuth, 1983. Receptorlike stereospecific binding of a pyrethroid insecticide to mouse brain membranes, Life Sci., 33:261–267.PubMedCrossRefGoogle Scholar
  76. Stevens, C. F., 1984. Biophysical studies of ion channels, Science, 225:1346–1350.PubMedCrossRefGoogle Scholar
  77. Vaughan, G. L. and A. M. Jungreis, 1977. Insensitivty of lepidopteran tissues to ouabain: physiological mechanisms for protection from cardiac glycosides, J. Insect Physiol., 23:585–589.CrossRefGoogle Scholar
  78. Wilkinson, C. F., ed., 1976. “Insecticide Biochemistry and Physiology”, Plenum Publ. Corp., New York.Google Scholar
  79. Windholz, M., S. Budavari, R. Blumetti, and E. Otterbein, 1983. “The Merck Index”, Merck and Co., Inc. Rahway.Google Scholar
  80. Wray, Y., R. H. Davis and A. Nahrstedt. 1983. Biosynthesis of cyanogenic glycosides in butterflies and moths: Incorporation of valine and isoleucine into linamarin and lotaustralin by Zygaena and Heliconius species (Lepidoptera), Z. Naturforsch., Sect. C Biosci., 38:583–588.Google Scholar
  81. Yamamoto, I., Y. Takahashi and N. Kyomura, 1983. Suppression of altered acetylcholinesterase of the green rice leafhopper by N-propyl and N-methyl carbamate combinations, in: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 376–386, Plenum Publ. Corp., New York.Google Scholar
  82. Yust, H. R., and F. Shelden, 1952. A study of the physiology of resistance to hydrocyanic acid in the California red scale, Ann. Ent. Soc. Amer., 45:220–228.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • May R. Berenbaum
    • 1
  1. 1.Department of Entomology 320 Morrill HallUniversity of Illinois Urbana-ChampaignUrbanaUSA

Personalised recommendations