Skip to main content

Recent Advances in the Role of the Renal Nervous System and Renin in Hypertension

  • Chapter
Contemporary Nephrology
  • 112 Accesses

Abstract

Considerable evidence indicates that the kidneys play an important role in blood pressure regulation under a variety of physiologic conditions and in several forms of experimental, as well as human, hypertension. The kidneys can influence blood pressure homeostasis through a variety of afferent neurogenic as well as hormonal mechanisms, which include the renin-angiotensin system, prostaglandins, and the kallikrein-kinin system. The renal mechanisms, on the other hand, are under the influence of and, therefore, are regulated by arterial baroreceptors, cardiopulmonary mechanoreceptors, chemoreceptors, and the central nervous system. The purpose of this chapter is to critically analyze the most current views concerning the role of the renal neurogenic and the renin-angiotensin system under physiologic conditions and in the pathogenesis of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barajas, L, 1978, Innervation of the renal cortex, Fed. Proc. 37: 1192–1201.

    PubMed  CAS  Google Scholar 

  2. Barajas, L. and Wang, P, 1979, Localization of tritiated norepinephrine in the renal arteriolar nerves, Anat. Rec. 195: 525–534.

    Article  PubMed  CAS  Google Scholar 

  3. DiBona, G. F., 1977, Neurogenic regulation of renal tubular sodium reabsorption, Am. J. Physiol. 233: F73–F81.

    PubMed  CAS  Google Scholar 

  4. Zimmerman, H. D., 1972, Elektronenmikroskopische befunde zur innervation des nephron nach untersuchungen an der fetalen nachniere des menschen, Z. Zellforsch. 129: 65–75.

    Article  Google Scholar 

  5. Dinerstein R. J., Jones, R. T., and Goldberg, L. I., 1983, Evidence for dopamine containing renal nerves, Fed. Proc. 42: 3005–3008.

    PubMed  CAS  Google Scholar 

  6. Insel, P. A. and Snavely, M. D., 1981, Catecholamines and the kidney receptors and renal function, Annu. Rev. Physiol. 43: 625–636.

    Article  PubMed  CAS  Google Scholar 

  7. Graham, R. M., Sagalowsky, A. I., Pettinger, W. A., Murphy, T., Gandler, T., and Sanford, S. E., 1980, Renal alpha receptors in experimental hypertension in the rat, Fed. Proc. 39: 497.

    Google Scholar 

  8. Pettinger, W. A., Sanchez, A., Saavedra, J., Haywood, J. R., Gandler, T., and Rodes, T., 1982, Altered alpha2-adrenergic receptor regulation in genetically hypertensive rats, Hypertension 4 ( Suppl. II ): II 188–11192.

    Google Scholar 

  9. Hoffman, B. B. and Lefkowitz, R. J., 1980, Radioligand binding studies of adrenergic receptors: New insights into molecular and physiological regulation, Annu. Rev. Pharmacol. Toxicol. 20: 581–608.

    Article  PubMed  CAS  Google Scholar 

  10. Goldberg, L. I. and Weder, A. B., 1980, Connections between endogenous dopamine, dopamine receptors and sodium excretion: Evidences and hypotheses, Rec. Adv. Clin. Pharmacol. 2: 149–166.

    Google Scholar 

  11. Barajas, L. and Wang, P., 1975, Demonstration of acetylcholinesterase in the adrenergic nerves of the renal glomerular arterioles, J. Ultrastruct. Res. 53: 244–253.

    Article  PubMed  CAS  Google Scholar 

  12. Thames, M. D. and Ballon, B. J., 1984, Occlusive summation of carotid and aortic baroreflexes in control of renal nerve activity, Am. J. Physiol. 246: H851–H857.

    PubMed  CAS  Google Scholar 

  13. Karim, F., Kidd, C., Malpus, C. M., and Penna, P. E., 1972, Effects of stimulation of the left atrial receptors on sympathetic efferent nerve activity, J. Physiol. 227: 243–260.

    PubMed  CAS  Google Scholar 

  14. Clement, D. L., Pelletier, C. L., and Shepherd, J. T., 1972, Role of vagal afferents in the control of renal sympathetic nerves in the rabbit, Circ. Res. 31: 824–830.

    PubMed  CAS  Google Scholar 

  15. Thames, M. D., Waickman, L. A., and Abboud, F. M., 1980, Sensitization of cardiac receptors (vagal afferents) by intracoronary acetylstrophantidin, Am. J. Physiol. 239: H628–H635.

    PubMed  CAS  Google Scholar 

  16. Mancia, G., Donald, D. E., and Shepherd, J. T., 1973, Inhibition of adrenergic outflow to peripheral blood vessels by vagal afferents from the cardiopulmonary region in the dog, Circ. Res. 33: 713–721.

    PubMed  CAS  Google Scholar 

  17. Echtenkamp, S. F. and Gilmore, J. P., 1980, Intravascular mechanoreceptor modulation of renal sympathetic nerve activity in the cat, Am. J. Physiol. 238: H801–H808.

    PubMed  CAS  Google Scholar 

  18. Skoog, P., Mansson, J., and Thoren, P., 1985, Changes in renal sympathetic outflow during hypotensive haemorrhage in rats, Acta Physiol. Scand. 125: 655–660.

    Article  PubMed  CAS  Google Scholar 

  19. Thoren, P., 1979, Role of cardiac vagal c-fibers in cardiovascular control, Rev. Physiol. Biochem. Pharmacol. 86: 1–94.

    Article  PubMed  CAS  Google Scholar 

  20. Reimann, K. A. and Weaver, L. C., 1980, Contrasting reflexes evoked by chemical activation of cardiac afferent nerves, Am. J. Physiol. 239: H316–H325.

    PubMed  CAS  Google Scholar 

  21. DiBona, G. F., 1982, The functions of the renal nerves, Rev. Physiol. Biochem. Pharmacol. 34: 76–181.

    Google Scholar 

  22. McCall, R. B. and Gebber, G. L., 1976, Differential effect of baroreceptor reflexes and clonidine on frequency components of sympathetic discharge, Eur. J. Pharmacol. 36: 69–78.

    Article  PubMed  CAS  Google Scholar 

  23. Friggi, A., Chevalier-Cholat, A. M., and Torresani, J., 1977, Reduction of efferent renal nerve activity by propranolol in rabbits, Acad. Sci. Comptes. Rendus. 284: 1835–1837.

    CAS  Google Scholar 

  24. Fukijama, K., 1972, Central action of angiotensin and hypertension. Increased central vasomotor outflow by angiotensin, Jpn. Circ. J. 36: 599–602.

    Article  Google Scholar 

  25. Bell, C. and Lang, W. J., 1973, Neural dopaminergic vasodilator control in the kidney, Nature 246: 27–29.

    CAS  Google Scholar 

  26. Barajas, L. and Wang, P., 1978, Myelinated nerves of the rat kidney, J. Ultrastruct. Res. 65: 148–162.

    Article  CAS  Google Scholar 

  27. Ueda, H. and Uchida, Y., 1968, Afferent impulses in the renal nerves, Jpn. Heart J. 9: 517–519.

    Article  PubMed  CAS  Google Scholar 

  28. Niijima, A., 1971, Afferent discharges from arterial mechanoreceptors in the kidney of the rabbit, J. Physiol 219: 477–485.

    Google Scholar 

  29. Francisco, L. L., Hoversten, L. G., and DiBona, G. F., 1980, Renal nerves in the compensatory adaptation to ureteral occlusion, Am. J. Physiol 238: F229–F234.

    PubMed  CAS  Google Scholar 

  30. Recordati, G. M., Moss, N. G., Genovesi, A., and Rogenes, P. R., 1980, Renal receptors in the rat sensitive to chemical alterations of their environment, Circ. Res. 46: 395–405.

    PubMed  CAS  Google Scholar 

  31. Ciriello, J. and Calarsecu, F. R., 1980, Hypothalamic projections of renal afferent nerves in the cat, Can. J. Physiol Pharmacol 58: 574–576.

    Article  PubMed  CAS  Google Scholar 

  32. Kopp, V. C., Smith, L. A., and DiBona, G., 1985, Renorenal reflex: Neural components of ipsilateral and contralateral renal responses, Am. J. Physiol 249: F507–F517.

    PubMed  CAS  Google Scholar 

  33. Karim, F., Kidd, C., Malpus, C. M., and Penna, P. E., 1972, Effects of stimulation of the left atrial receptors on sympathetic efferent nerve activity, J. Physiol 227: 243–260.

    CAS  Google Scholar 

  34. Lloyd, T. C. and Friedman, J. J., 1977, Effect of a left atrium pulmonary vein baroreflex on peripheral vascular beds, Am. J. Physiol 233: H587–H591.

    PubMed  Google Scholar 

  35. Thames, M. D. and Abboud, F. M., 1979, Reflex inhibition of renal sympathetic nerve activity during myocardial ischemia mediated by left ventricular receptors with vagal afferents in dogs, J. Clin. Invest. 63: 395–402.

    Article  CAS  Google Scholar 

  36. Niijima, A., 1976, Baroreceptor effects on renal and adrenal nerve activity, Am. J. Physiol 230: 1733–1736.

    Google Scholar 

  37. Aukland, K., 1976, Renal blood flow, in: International Review of Physiology; Kidney and Urinary Tract Physiology II, Volume 11 ( K. Turau, ed.), University Park Press, Baltimore, pp. 23–79.

    Google Scholar 

  38. Smith, H. W., Rovenstine, E. A., Goldring, W., Chasis, H., and Ranges, H. A., 1939, The effects of spinal anesthesia on the circulation in normal unoperated man with reference to the autonomy of the arterioles and especially those of renal circulation, J. Clin. Invest. 18: 319–341.

    Article  CAS  Google Scholar 

  39. Vatner, S. F., 1974, Effects of hemorrhage on regional blood flow distribution in dogs and primates, J. Clin. Invest. 54: 225–235.

    Article  CAS  Google Scholar 

  40. Gross, R., Ruffmann, K., and Kirchheim, H., 1979, The separate and combined influences of common carotid occlusion and nonhypotensive hemorrhage on kidney blood flow, Pflueger’s Arch. 379: 81–88.

    Article  CAS  Google Scholar 

  41. Mancia, G., Baccelli, G., and Zanchetti, A., 1974, Regulation of renal circulation during behavioral changes in the cat, Am. J. Physiol 227: 536–542.

    PubMed  CAS  Google Scholar 

  42. Kirchheim, H., 1976, Systemic arterial baroreceptor reflexes, Physiol Rev. 56: 100–176.

    PubMed  CAS  Google Scholar 

  43. Forsyth, R. P., 1971, Regional blood flow changes during 72-hour avoidance schedules in the monkey, Science 173: 546–548.

    Article  PubMed  CAS  Google Scholar 

  44. Gross, R. and Kirchheim, H., 1980, Effects of bilateral carotid occlusion and auditory stimulation on renal blood flow and sympathetic nerve activity in the conscious dog, Pflüeger’s Arch. 383: 233–239.

    Article  CAS  Google Scholar 

  45. Sadowski, J., Kurkus, J., and Gellert, R., 1979, Denervated and intact kidney responses to saline load in awake and anesthetized dogs, Am. J. Physiol 237: F262–F267.

    PubMed  CAS  Google Scholar 

  46. Hollenberg, N. K., Adams, D. F., Rashid, A., Epstein, M., Abrams, H. L., and Merrill, J. P., 1971, Renal vascular response to salt restriction in normal man. Evidence against adrenergic mediation, Circulation 43: 845–851.

    PubMed  CAS  Google Scholar 

  47. Myers, B. D., Deen, W. D., and Brenner, B. M., 1975, Effects of norepinephrine and angiotensin II on the determinants of glomerular ultrafiltration and proximal tubule fluid reabsorption in the rat, Circ. Res. 37: 101–110.

    PubMed  CAS  Google Scholar 

  48. Andreucci, V. E., Dal Canton, A., Corradi, A., Stanziale, R., and Migone, L., 1976, Role of the efferent arteriole in glomerular hemodynamics of superficial nephrons, Kidney Int. 9: 475–480.

    Article  PubMed  CAS  Google Scholar 

  49. Click, R. L., Joyner, W. L., and Gilmore, J. P., 1979, Reactivity of glomerular afferent and efferent arterioles in renal hypertension, Kidney Int. 15: 109–115.

    Article  PubMed  CAS  Google Scholar 

  50. Johns, E. J., 1980, A comparison of the ability of two angiotensin II receptor blocking drugs, 1-Sar, 8-ala angiotensin II and 1-sar, 8-ile angiotensin II, to modify the regulation of glomerular filtration rate in the cat, Br. J. Pharmacol. 71: 499–506.

    PubMed  CAS  Google Scholar 

  51. Deis, R. P., and Alonso, N., 1970, Diuretic effect of dopamine in the rat, J. Endocr. 47: 129–130.

    Article  PubMed  CAS  Google Scholar 

  52. Goldberg, L. I., 1972, Cardiovascular and renal actions of dopamine: Potential clinical applications. Pharmacol. Rev. 24: 1–29.

    PubMed  CAS  Google Scholar 

  53. McDonald, R. H., Goldberg, L. I., McNay, J. L., and Tuttle, E. P., 1964, Effect of dopamine in man: Augmentation of sodium excretion, glomerular filtration rate and renal plasma flow, J. Clin. Invest. 43: 1116–1124.

    Article  PubMed  CAS  Google Scholar 

  54. Bernard, C., 1859, Legons sur les Proprieties physiologique des Liquides de L’Organisme, Bailliere, Paris, p. 172.

    Book  Google Scholar 

  55. Bello-Reuss, E., 1980, Effect of catecholamines on fluid reabsorption by the isolated proximal convoluted tubule, Am. J. Physiol. 238: F347–F352.

    PubMed  CAS  Google Scholar 

  56. Morgunov, N. and Baines, A. D., 1981, Renal nerves and catecholamine excretion, Am. J. Physiol. 240: F75–F81.

    PubMed  CAS  Google Scholar 

  57. Bello-Reuss, E., Colindres, R. E., Pastoriza-Munoz, E., Mueller, R. A., and Gottschalk, C. W., 1975, Effects of acute unilateral renal denervation in the rat, J. Clin. Invest. 56: 208–217.

    Article  CAS  Google Scholar 

  58. Nomura, G., Takabatake, T., Arai, S., Uno, D., Shimao, M., and Hattori, N., 1977, Effect of acute unilateral renal denervation on tubular sodium reabsorption in the dog, Am. J. Physiol. 232: F16–F19.

    PubMed  CAS  Google Scholar 

  59. Bencsath, P., Asztalos, B., Szalay, L., and Takacs, L., 1979, Renal handling of sodium after chronic renal sympathectomy in the anesthetized rat, Am. J. Physiol. 236: F513–F518.

    PubMed  CAS  Google Scholar 

  60. Schneider, E., McLane-Vega, L., Hanson, R., Childers, J., and Gleason, S., 1978, Effect of chronic bilateral renal denervation on daily sodium excretion in the conscious dog, Fed. Proc. 37: 645.

    Google Scholar 

  61. DiBona, G. F. and Sawin, L. L., 1983, Renal nerves in renal adaptation to dietary sodium restriction, Am. J. Physiol. 245: F322–F328.

    PubMed  CAS  Google Scholar 

  62. Wilcox, C. S., Aminoff, M. J., and Slater, J. D. H., 1977, Sodium homeostasis in patients with autonomic failure, Clin. Sci. Mol. Med. 53: 321–328.

    PubMed  CAS  Google Scholar 

  63. Gill, J. R., and Bartter, F. C., 1966, Adrenergic nervous system in sodium metabolism. II: Effects of guanethidine on the renal response to sodium depravation in normal man, N. Engl J. Med. 275: 1466–1471.

    Article  PubMed  CAS  Google Scholar 

  64. Osborn, J. L., Holdaas, H., Thames, M. D., and DiBona, G. F., 1983, Renal adrenoceptor mediation of antinatriuretic and renin secretion responses to low frequency renal nerve stimulation in the dog, Circ. Res. 53: 298–305.

    PubMed  CAS  Google Scholar 

  65. Alexander, R. W., Gill, J. R., Yamabe, H., Lovenberg, W., and Reiser, H. R., 1975, Effects of dietary sodium and of acute saline infusion on the interrelationship between dopamine excretion and adrenergic activity in man, J. Clin. Invest. 54: 194–200.

    Article  Google Scholar 

  66. Romoff, M. S., Keusch, G., Campese, V. M., Wang, M. S., Friedler, R. M., Weidmann, P., and Massry, S. G., 1979, Effect of sodium intake on plasma catecholamines in normal subjects, J. Clin. Endocrinol Metab. 48: 26–31.

    Article  PubMed  CAS  Google Scholar 

  67. Krishna, G. G., Danovitch. G. M., Beck, F. W. J., and Sowers, J. R., 1985, Dopaminergic mediation of the natriuretic response to volume expansion, J. Lab. Clin. Med. 105: 214–218.

    CAS  Google Scholar 

  68. Imbs, J. L., Schmidt, M., Ehrahardt, J. D., and Schwartz, J., 1984, The sympathetic nervous system and renal sodium handling: Is dopamine involved? J. Cardiovasc. Pharmacol 6 (Suppl. 1): S171–S175.

    Article  PubMed  Google Scholar 

  69. Cuche, J. L., Marchand, G. R., Greger, R. F., Lang, F. C., and Knox, F. G., 1976, Phosphaturic effect of dopamine in dogs: Possible role of intrarenally produced dopamine in phosphate regulation, J. Clin. Invest. 58: 71–76.

    Article  PubMed  CAS  Google Scholar 

  70. Harvey, J. N., Lasson, I. F., Clayden, A. D., Cope, G. F., Perkins, C. M., and Lee, M. R., 1984, A paradoxical fall in urine dopamine output when patients with essential hypertension are given added dietary salt, Clin. Sci. 67: 83–88.

    PubMed  CAS  Google Scholar 

  71. Casson, J. F., Lee, M. R., Brownjohn, A. M., Parsons, F. M., Davison, A. M., Will, E. J., and Clayden, A. D., 1983, Failure of renal dopamine response to salt loading in chronic renal disease, Br. Med. J. 286: 503–506.

    Article  CAS  Google Scholar 

  72. Davis, J. O. and Freeman, R. H., 1976, Mechanisms regulating renin release, Physiol Rev. 56: 1–56.

    PubMed  CAS  Google Scholar 

  73. DiBona, G. F., 1985, Neural regulation or renal tubular sodium reabsorption and renin secretion, Fed. Proc. 44: 2816–2822.

    PubMed  CAS  Google Scholar 

  74. Katholi, R. E., 1983, Renal nerves in the pathogenesis of hypertension in experimental animals and humans, Am. J. Physiol 245: F1–F14.

    PubMed  CAS  Google Scholar 

  75. Villareal, D., Freeman, R. H., Davis, J. O., Garoutte, G., and Sweet, W. D., 1984, Pathogenesis of one-kidney, one-clip hypertension in rats after renal denervation, Am. J. Physiol 247: H61–H66.

    Google Scholar 

  76. Brody, M. J. and Johnson, A. K., 1980, Role of the anteroventral third ventricle region in fluid and electrolyte balance, arterial pressure regulation and hypertension, in: Frontiers in Neuroendocrinology ( L. Martini and W. F. Ganong, eds.), Raven Press, New York, pp. 249–292.

    Google Scholar 

  77. Fink, G. D. and Brody, M. J., 1980, Impaired neurogenic control of renal vasculature in renal hypertensive rats, Am. J. Physiol 238: H770–H775.

    PubMed  CAS  Google Scholar 

  78. Guyton, A. C., Coleman, T. G., Cowley, A. W. Jr., Scheel, K. W., Manning, R. D., Jr., and Norman, R. A., Jr., 1972, Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension, Am. J. Med. 52: 584–594.

    Article  PubMed  CAS  Google Scholar 

  79. Blaustein, M. P., 1977, Sodium ions, calcium ions, blood pressure regulation and hypertension: A reassessment and a hypothesis, Am. J. Physiol. 232: 165–173.

    Google Scholar 

  80. Tobian, L., Johnson, M. A., Lange, J., and Magraw, S., 1975, Effect of varying perfusion pressures on the output of sodium and renin and the vascular resistance in kidney of rats with “post-salt” hypertension and Kyoto spontaneous hypertension, Circ. Res. 36 (Suppl. I): 161–170.

    Google Scholar 

  81. Dahl, L. K. and Heine, M., 1975, Primary role of renal homografts in setting blood pressure levels in rats, Circ. Res. 36: 692–696.

    PubMed  CAS  Google Scholar 

  82. Kawabe, K., Watanabe, T. X., Shiono, K., and Sokabe, H., 1978, Influence of blood pressure of renal isografts between spontaneously hypertensive and normotensive rats, utilizing the Fi hybrids, Jpn. Heart J. 19: 886–893.

    Article  PubMed  CAS  Google Scholar 

  83. Bianchi, G., Fox, U., DiFrancesco, G. F., Giovannetti, A. M., and Pagetti, D., 1974, Blood pressure changes produced by kidney cross-transplantation between spontaneously hypertensive rats (SHR) and normotensive rats (NR), Clin. Sci. Mol. Med. 47: 435–448.

    PubMed  CAS  Google Scholar 

  84. Grim, C. E., Luft, F. C., Miller, J. Z., Brown, P. L., Gannon, M. A., and Weinberger, M. H., 1979, Effects of sodium loading and depletion in normotensive first-degree relatives of essential hypertension, J. Lab. Clin. Med. 94: 764–771.

    PubMed  CAS  Google Scholar 

  85. Beierwalters, W. H., Arendshorst, W., and Klemmer, P. J., 1982, Electrolytes and water balance in young spontaneously hypertensive rats, Hypertension 4: 908–915.

    Google Scholar 

  86. Roman, R. J. and Cowley, A. W., Jr., 1985, Abnormal pressure-diuresis response in spontaneously hypertensive rats, Am. J. Physiol. 248: F199–F205.

    PubMed  CAS  Google Scholar 

  87. Vanderwalle, A., Farman, N., and Bonvalet, J. P., 1978, Renal handling of sodium in Kyoto-Okamoto rats: A micropuncture study, Am. J. Physiol. 235: F394–F402.

    Google Scholar 

  88. Cangiano, J. L., Rodriguez-Sargent, C., Opava-Stitzer, S., and MartinezMaldonado, M., 1984, Renal Na+-K+-ATPase in weanling and adult spontaneously hypertensive rats, Proc. Soc. Exp. Biol. Med. 177: 240–246.

    PubMed  CAS  Google Scholar 

  89. Liard, J. F., Tarazi, R. L., Ferrario, C. M., and Manner, W. M., 1975, Hemodynamic and humoral characteristics of hypertension induced by prolonged stellate ganglion stimulation in conscious dogs, Circ. Res. 36: 455–464.

    PubMed  CAS  Google Scholar 

  90. Katholi, R. E., Carey, R. M., Ayers, C. R., Vaughan, E. D., Yancey, M. R., and Morton, C. L., 1977, Production of sustained hypertension by chronic intrarenal norepinephrine infusion in conscious dogs, Circ. Res. 40 (Suppl. I): I118–1126.

    PubMed  CAS  Google Scholar 

  91. Nakamura, K., and Nakamura, K., 1977, Selective activation of sympathetic ganglia in young spontaneously hypertensive rats, Nature 266: 265–266.

    Article  PubMed  CAS  Google Scholar 

  92. Okamoto, K., Nosako, S., Yamori, Y., and Matsumoto, M., 1967, Participation of renal factors in the pathogenesis of hypertension in the spontaneously hypertensive rat, Jpn. Heart J. 8: 168–180.

    Article  PubMed  CAS  Google Scholar 

  93. Lundin, S. and Thoren, P., 1982, Renal function and sympathetic activity during mental stress in normotensive and spontaneously hypertensive rats, Acta Physiol Scand. 115: 115–124.

    Article  PubMed  CAS  Google Scholar 

  94. Winternitz, S. R., Katholi, R. E., and Oparil, S., 1980, Role of the renal sympathetic nerves in the development and maintenance of hypertension in spontaneously hypertensive rat, J. Clin. Invest. 66: 971–978.

    Article  PubMed  CAS  Google Scholar 

  95. Ricksten, S. E., Yao, T., DiBona, G. F., and Thoren, P., 1981, Renal nerve activity and exaggerated natriuresis in conscious spontaneously hypertensive rats, Acta Physiol Scand. 112: 161–167.

    Article  PubMed  CAS  Google Scholar 

  96. Katholi, R. E., Naftilan, A. J., and Oparil, S., 1980, Importance of renal sympathetic tone in the development of DOCA-salt hypertension in the rat, Hypertension 2: 266–273.

    PubMed  CAS  Google Scholar 

  97. Wallin, B. G., Delius, W., and Hagbarth, K. E., 1973, Comparison of sympathetic nerve activity in normotensive and hypertensive subjects, Circ. Res. 33: 9–21.

    PubMed  CAS  Google Scholar 

  98. Brown, M. J., Jenner, D. A., Allison, D. J., and Dollery, C. T., 1981, Variations in individual organ release of noradrenaline measured by an improved radioenzymatic technique: Limitations of peripheral nervous measurements in the assessment of sympathetic nervous activity, Clin. Sci. 61: 585–590.

    PubMed  CAS  Google Scholar 

  99. Gribbin, B., Pickering, T. G., Slight, P., and Peto, R., 1971, Effect of age and high blood pressure on baroreflex sensitivity in man, Circ. Res. 29: 424–431.

    PubMed  CAS  Google Scholar 

  100. Krieger, E. M., 1976, Time course of baroreceptor resetting in acute hypertension, Am. J. Physiol 218: 486–490.

    Google Scholar 

  101. Tarazi, R. C. and Dustan, H. P., 1973, Neurogenic participation in essential and renovascular hypertension assessed by acute ganglionic blockade: Correlation with haemodynamic indices and intravascular volume, Clin. Sci. 44: 197–212.

    PubMed  CAS  Google Scholar 

  102. Goldstein, D. J., 1981, Plasma norepinephrine in essential hypertension: A study of the studies, Hypertension 3: 48–52.

    PubMed  CAS  Google Scholar 

  103. Goldstein, D. J., 1981, Plasma norepinephrine during stress in essential hypertension. A study of the studies, Hypertension 3: 551–556.

    PubMed  CAS  Google Scholar 

  104. Franco-Morselli, R., Elghozi, J. L., Joly, E., DiGiulio, S., and Meyer, P., 1977, Increased plasma adrenaline concentrations in benign essential hypertension, Br. Med. J. 2: 1251–1254.

    Article  PubMed  CAS  Google Scholar 

  105. Lake, C. R., Gullner, H. G., Polinsky, R. J., Ebert, M. H., Ziegler, M. G., and Bartter, F. C., 1981, Essential hypertension: Central and peripheral norepinephrine, Science 211: 955–957.

    Article  PubMed  CAS  Google Scholar 

  106. Esler, M., Jackman, G., Bobix, A., Leonard, P., Kelleher, D., Skews, H., Jennings, G., and Korner, P., 1981, Norepinephrine kinetics in essential hypertension. Defective neuronal uptake of norepinephrine in some patients, Hypertension 3: 149–156.

    PubMed  CAS  Google Scholar 

  107. Goldstein, D. S., Horwitz, D., Keiser, H. R., and Polinsky, R. J., 1983, Plasma 1-[3H] norepinephrine, d-[14C] norepinephrine, and d, 1-[3H] isoproterenol kinetics in essential hypertension, J. Clin. Invest. 72: 1748–1758.

    Article  PubMed  CAS  Google Scholar 

  108. Campese, V. M., Myers, H. R., and DeQuattro, V., 1980, Neurogenic factors in low renin essential hypertension, Am. J. Med. 69: 83–91.

    Article  PubMed  CAS  Google Scholar 

  109. Louis, W. J., Doyle, A. E., and Anavekar, S., 1973, Plasma norepinephrine levels in essential hypertension, N. Engl. J. Med. 288: 559–601.

    Article  Google Scholar 

  110. Campese, V. M., Romoff, M., Telfer, N., Wiedmann, P., and Massry, S. G., 1980, Role of sympathetic nerve inhibition and body sodium volume state in the antihypertensive action of clonidine in essential hypertension, Kidney Int. 18: 351–357.

    Article  PubMed  CAS  Google Scholar 

  111. Gomez, D. M., 1951, Evaluation of renal resistance with special reference to changes in essential hypertension, J. Clin. Invest. 30: 1143–1153.

    Article  PubMed  CAS  Google Scholar 

  112. Hollenberg, N. K. and Adams, D. F., 1976, The renal circulation in hypertensive disease, Am. J. Med. 60: 773–784.

    Article  PubMed  CAS  Google Scholar 

  113. Sullivan, J. M., Adams, D. F., and Hollenberg, N. K., 1976, p-Adrenergic blockade in essential hypertension: Reduced renin release despite renal vasoconstriction, Circ. Res. 39: 532 - 536.

    Google Scholar 

  114. DeLeeuw, P. W. and Birkenhager, W. H., 1982, Renal response to propranolol treatment in hypertensive humans, Hypertension 4: 125–131.

    CAS  Google Scholar 

  115. Dahl, L. K., 1961, Possible role of chronic excess salt consumption in the pathogenesis of essential hypertension, Am. J. Cardiol. 8: 571–575.

    Article  CAS  Google Scholar 

  116. Tobian, L., 1983, Salt and hypertension, Am. J. Nephrol. 3: 80–87.

    Article  PubMed  CAS  Google Scholar 

  117. Kawasaki, T., Delea, C. S., Bartter, F. C., and Smith, H., 1978, The effect of high-sodium and low-sodium intakes on blood pressure and other related variables in human subjects with idiopathic hypertension, Am. J. Med. 64: 193–198.

    Article  PubMed  CAS  Google Scholar 

  118. Campese, V. M., Romoff, M. S., Levitan, D., Saglikes, Y., Friedler, R. M., and Massry, S. G., 1982, Abnormal relationship between sodium intake and sympathetic nervous activity in salt-sensitive patients with essential hypertension, Kidney Int. 21: 371–378.

    Article  PubMed  CAS  Google Scholar 

  119. Aoki, K., Yamori, Y., Ooshima, A., and Okamoto, K., 1972, Effect of high or low sodium intake in spontaneously hypertensive rats, Jpn. Circ. J. 36: 539–545.

    Article  PubMed  CAS  Google Scholar 

  120. Falkner, B., Onesti, G., and Hayes, P., 1981, The role of sodium in essential hypertension in genetically hypertensive adolescents, in: Hypertension in the Young and the Old ( G. Onesti and K. E. Kim, eds.), Grune & Stratton, New York, pp. 29–35.

    Google Scholar 

  121. Winternitz, S. R. and Oparil, S., 1982, Sodium-neural interactions in the development of spontaneous hypertension, Clin. Exp. Hypertension A4: 751–760.

    Article  CAS  Google Scholar 

  122. Dietz, R., Schomig, A., Rascher, W., Strasser, R., and Kubler, W., 1980, Enhanced sympathetic activity caused by salt loading in spontaneously hypertensive rats, Clin. Sci. 59: 171s–l73s.

    PubMed  CAS  Google Scholar 

  123. Takeshita, A., Mark, A. L., and Brody, M. J., 1979, Prevention of salt-induced hypertension in Dahl strain by 6-hydroxydopamine, Am. J. Physiol. 236: H48–H52.

    PubMed  CAS  Google Scholar 

  124. Ikeda, T., Tobian, L., Iwai, J., and Goossens, P., 1978, Central nervous system pressor responses in rats susceptible and resistant to sodium chloride hypertension, Clin. Sci. Mol. Med. 55: 225s–227s.

    CAS  Google Scholar 

  125. Koepke, J. P. and DiBona, G. F., 1985, High sodium intake enhances renal nerve and antinatriuretic responses to stress in spontaneously hypertensive rats, Hypertension 7: 357–363.

    PubMed  CAS  Google Scholar 

  126. Heistad, D. D., Abboud, F. M., and Ballard, D. R., 1971, Relationship between plasma sodium concentration and vascular reactivity in man, J. Clin. Invest. 50: 2022–2032.

    Article  CAS  Google Scholar 

  127. Dietz, R., 1983, The role of potassium in hypertension, Am. J. Nephrol. 3: 100–108.

    Article  PubMed  CAS  Google Scholar 

  128. Peach, M. J., 1977, Renin-angiotensin system: Biochemistry and mechanisms of action, Physiol Rev. 57: 313–370.

    PubMed  CAS  Google Scholar 

  129. Brunner, H., Chang, P., Wallach, R., Sealy, J. E., and Laragh, J. H., 1972, Angiotensin II vascular receptors: Their avidity and relationship to sodium balance, the autonomic nervous system and hypertension, J. Clin. Invest. 51: 58–67.

    Article  PubMed  CAS  Google Scholar 

  130. Peart, W. S., 1975, Renin-angiotensin system, N. Engl. J. Med. 292: 302–306.

    Article  PubMed  CAS  Google Scholar 

  131. Malvin, R. L., 1971, Possible role of the renin-angiotensin system in regulation of antidiuretic hormone section, Fed. Proc. 30: 1383–1386.

    PubMed  CAS  Google Scholar 

  132. Re, R. N., 1984, Cellular biology of the renin-angiotensin systems, Arch. Intern. Med. 144: 2037–2041.

    Article  PubMed  CAS  Google Scholar 

  133. Alexander, R. W. and Gimbrone, M. A., 1976, Stimulation of prostaglandin E synthesis in cultured human umbilical vein smooth muscle cells, Proc. Natl. Acad. Sci. USA 73: 1617–1620.

    Article  PubMed  CAS  Google Scholar 

  134. DeFronzo, R., 1980, Hyperkalemia and hyporeninemic hypoaldosteronism, Kidney Int. 17:118–134.

    Google Scholar 

  135. DeLeiva, A., Christlieb, A. R., Melby, J. C., Graham, C. A., Day, R. P., Leutscher, J. A., and Zager, P. G., 1976, Big renin and biosynthetic defect of aldosterone in diabetes mellitus, N. Engl. J. Med. 295: 639–643.

    Article  PubMed  CAS  Google Scholar 

  136. Hsueh, W. A., Goldstone, R., Mongeon, R. L., and Carlson, E. J., Impaired conversion of prorenin to renin in diabetes mellitus (submitted, 1987 ).

    Google Scholar 

  137. Hsueh, W. A., 1984, Potential role of renin activation in renin secretion, Am. J. Physiol. 247: F205–F212.

    PubMed  CAS  Google Scholar 

  138. Atlas, S. A., Laragh, J. H., Sealey, J. E., and Moon, C., 1977, Plasma renin and “prorenin” in essential hypertension during sodium depletion, betablockade, and reduced arterial pressure, Lancet 2: 785–788.

    Article  PubMed  CAS  Google Scholar 

  139. Poulsen, K., Vuust, J., and Lund, T., 1980, Renin precursor from mouse kidney identified by cell-free translation of messenger RNA, Clin. Sci. 59: 297–299.

    PubMed  CAS  Google Scholar 

  140. Lingappa, V. R. and Blobel, G., 1980, Early events in the biosynthesis of secretory and membrane proteins: The signal hypothesis, Rec. Prog. Horm. Res. 36: 451–474.

    PubMed  CAS  Google Scholar 

  141. Catanzaro, D. F., Mullins, J. J., and Morris, B. J., 1983, The biosynthetic pathway of renin in mouse submandibular gland, J. Biol. Chem. 258: 7364–7368.

    PubMed  CAS  Google Scholar 

  142. Pratt, R. E., Quellette, A. J., and Dzau, V. J., 1983, Biosynthesis of renin: Multiplicity of active and intermediate forms, Proc. Natl. Acad. Sci. USA 80: 6809–6813.

    Article  PubMed  CAS  Google Scholar 

  143. Panthier, J. J., Foote, S., Chambrand, B., Strosberg, A. D., Corvol, P., and Rougeon, F., 1982, Complete amino acid sequence and maturation of the mouse submaxillary gland renin precursor, Nature 298: 90–92.

    Article  PubMed  CAS  Google Scholar 

  144. Misono, K. S., Chang, J. J., and Inagami, T., 1982, Amino acid sequence of mouse submaxillary gland renin, Proc. Natl. Acad. Sci. USA 79: 4858 - 4862.

    Article  PubMed  CAS  Google Scholar 

  145. Pratt, R. E. and Dzau, V. J., 1984, Purification and characterization of one-chain and two-chain renins from mouse submandibular gland, Hypertension 6(Suppl. I):I–101–I-105.

    Google Scholar 

  146. Corvol, P., Galen, F. X., Devaux, C., Menard, J., and Corvol, M. T., 1984, Renin biosynthesis by human tumoral juxtaglomerular cells: Evidence for a renin precursor, J. Clin. Invest. 73: 1144–1155.

    Article  PubMed  Google Scholar 

  147. Atlas, S. A., Hesson, T. E., Sealey, J. E., Dharmgrongartama, B., Laragh, J. H., Ruddy, M. C., and Aurell, M., 1984, Characterization of inactive renin (prorenin) from renin-secreting tumprs of nonrenal origin, J. Clin. Invest. 73: 437–447.

    Article  PubMed  CAS  Google Scholar 

  148. Imai, T., Miyazaki, H., Hirose, S., Hori, H., Hayashi, T., Kageyama, R., Ohkubo, H., Nakanishi, S., and Murakami, K., 1983, Cloning and sequence analysis of cDNA for human renin precursor, Proc. Natl. Acad. Sci. USA 80: 7405–7409.

    Article  PubMed  CAS  Google Scholar 

  149. Soubrier, F., Panthier, J. T., Corvol, P., and Rougeon, F., 1983, Molecular cloning and nucleotide sequence of a human renin cDNA fragment, Nucl. Acid Res. 20: 7181.

    Article  Google Scholar 

  150. Shinagawa, T., Hsueh, W. A., Do, Y. S., and Tam, H., 1986, Purification and aminoterminal sequence of human renal renin, Biochem. Biophys. Res. Commun. 139: 446–454.

    Article  PubMed  CAS  Google Scholar 

  151. Steiner, D. F., Docherty, K., and Carroll, R., 1984, Golgi/granule processing of peptide hormone and neuropeptide precursors: A minireview, J. Cell Biochem. 24: 121.

    Article  PubMed  CAS  Google Scholar 

  152. Loh, Y. P., Brownstein, M. J., and Gainer, H., 1984, Proteolysis in neuropeptide processing and other neural functions, Annu. Rev. Neurosci. 7: 189.

    Article  PubMed  CAS  Google Scholar 

  153. Sealey, J. E., Atlas, S. A., and Laragh, J. H., 1980, Prorenin and other large molecular weight forms of renin, Endocr. Rev. 1: 365.

    Article  PubMed  CAS  Google Scholar 

  154. Sealey, J. E., Atlas, S. A., Laragh, J. H., Oxa, N. B., and Ryan, J. W., 1978, Human urinary kallikrein converts inactive to active renin and is a possible physiological activator of renin, Nature 275: 144–145.

    Article  PubMed  CAS  Google Scholar 

  155. Sealey, J. E., 1980, Prorenin activation by renal and plasma kallikreins, in: Enzymatic Release of Vasoactive Peptides ( F. Gross and G. Vogel eds.), Raven Press, New York, p. 117.

    Google Scholar 

  156. Margolius, H. S., Horwitz, D., Geller, R. G., Alexander, R. W., Gill, Jr. J. R., Pisano, J. J., and Reiser, H. R., 1974, Urinary kallikrein excretion in normal man. Relationship to sodium intake and sodium retaining steroids, Cir. Res. 35: 812–819.

    CAS  Google Scholar 

  157. Suzuki, S., Franco-Saenz, R., Tan, S. Y., and Mulrow, P. J., 1980, Direct action of rat urinary kallikrein on rat kidney to release renin, J. Clin. Invest. 66: 757–762.

    Article  PubMed  CAS  Google Scholar 

  158. Orstavik, T. B., Nustau, K., and Brandtzaeg, P., 1979, Origin of kallikrein in rat and human exocrine glands and kidney, Clin. Sci. 57: 239s–241s.

    PubMed  Google Scholar 

  159. Hsueh, W. A., Carlson, E. J., O’Connor, D., and Warren, S., 1980, Renin requires a structural alteration prior to activation by renal kallikrein, J. Clin. Endocrinol. Metab. 51: 942–944.

    Article  CAS  Google Scholar 

  160. Inagami, T., Okamoto, H., Ohtsuki, K., Shimamoto, K., Chao, J., and Margolius, H. S., 1982, Human plasma inactive renin: Purification and activation by proteases, J. Clin. Endocrinol. Metab. 55: 619–627.

    Article  PubMed  CAS  Google Scholar 

  161. Leutscher, J. A., Bialek, J. W., and Grislis, G., 1982, Human kidney cathepsins B and H activate and lower the molecular weight of human inactive renin, Clin. Exp. Hyper. Theory Pract. A4 (ll + 12): 2149.

    Article  Google Scholar 

  162. Takahashi, S., Murkami, K., and Mujake, Y., 1982, Activation of kidney prorenin by kidney cathespin B isozyme, J. Biochem. 9: 419.

    Google Scholar 

  163. Inagaki, T., Ohtsuki, K., and Inagami, T., 1983, Mouse submaxillary renin has a protease activity and converts human plasma inactive prorenin to an active form, J. Biol. Chem. 258: 7476–7480.

    CAS  Google Scholar 

  164. Oates, J., Whorton, R., Gerkins, J., Banch, R., Hollifield, J., and Frolich, J., 1979, The participation of prostaglandins in control of renin release, Fed. Proc. 38: 72–74.

    PubMed  CAS  Google Scholar 

  165. Horton, R., 1981, Prostaglandins and the renin-angiotensin system, Miner. Electrolyte Metab. 6: 1–8.

    Google Scholar 

  166. Patrono, C., Pugliese, F., Ciabattoni, G., Patrignani, P., Maseri, A., Chierchia, S., Peskar, B. A., Cinotti, G. A., Simenetti, B. M., and Pierucci, A., 1982, Evidence for a direct stimulatory effect of prostacyclin in renin release in man, J. Clin. Invest. 69: 231–239.

    Article  PubMed  CAS  Google Scholar 

  167. Vandongen, R. and Peart, W. S., 1974, Calcium dependence on the inhibitory effect of angiotensin on renin secretion in the isolated perfused kidney of the rat, Br. J. Pharmacol. 50: 125–129.

    CAS  Google Scholar 

  168. Rasmussen, H. and Barrett, P. Q., 1984, Calcium messenger system: An integrated view, Physiol. Rev. 64: 938–984.

    PubMed  CAS  Google Scholar 

  169. Keeton, T. K. and Campbell, W. B., 1980, The pharmacologic alteration of renin release, Pharmacol. Rev. 32: 91–227.

    Google Scholar 

  170. Poulsen, K. and Jacobsen, J., 1983, Renin precursors, J. Hypertension 1: 3–5.

    CAS  Google Scholar 

  171. Hsueh, W. A., Carlson, E. J., and Dzau, V., 1983, Characterization of inactive renin from human kidney and plasma: Evidence for a renal source of circulating inactive renin, J. Clin. Invest. 71: 506–517.

    Article  CAS  Google Scholar 

  172. Goldstone, R., Horton, R., Carson, E. J., and Hsueh, W. A., 1983, Reciprocal changes in active and inactive renin after converting enzyme inhibition in normal man, J. Clin. Endocrinol. Metab. 56: 264–268.

    Article  PubMed  CAS  Google Scholar 

  173. Derkx, F. H. M., Wenting, G. J., Man In’t Veld, A. J., Gool, J. M. G., Verhoeven, R. P., and Schalekamp, M. A. H. D., 1976, Inactive renin in human plasma, Lancet 2: 496–498.

    Google Scholar 

  174. Derkx, F. H. M., Tan-Tjiong, H., Man In’t Veld, A. D., and Schalekamp, M. A. D. H., 1983, Asynchronous changes in prorenin and renin secretion after captopril in patients with renal artery stenosis, Hypertension 5: 244.

    CAS  Google Scholar 

  175. Glorioso, N., Dessi-Fulgheri, P., Madeddu, P., Fois, G., Palermo, M., Cocco, F., Dettori, S., and Rappelli, A., 1984, Active and inactive renin after a single dose of captopril in hypertensive subjects, Am. J. Cardiol. 49: 1552–1554.

    Article  Google Scholar 

  176. Millar, J. A., Hammat, M. T., and Johnston, C. I., 1981, Effect of inhibition of converting enzyme on inactive renin in the circulation of salt-replete and salt-deplete normal subjects, J. Endocrinol. 86: 329–335.

    Article  Google Scholar 

  177. Sealey, J. E., Overlack, A., Laragh, J. H., Stumpe, K. O., and Atlas, S. A., 1981, Effect of captopril and aprotinin on inactive renin, J. Clin. Endocrinol. Metab. 53: 626–630.

    Article  PubMed  CAS  Google Scholar 

  178. Dzau, V. J., Sands, K., Dunckel, P., and Wilcox, C. S., 1983, Release of active and inactive renin into plasma and lymph of dog kidneys, Clin. Res. 31: 328A.

    Google Scholar 

  179. Hseuh, W. A., Goldstone, R., Carlson, E. J., and Horton, R., 1985, Evidence that the p-adrenergic system and prostaglandins stimulate renin release through different mechanisms, J. Clin. Endocrinol. Metab. 61: 399–403.

    Article  Google Scholar 

  180. Fitzgerald, G. A., Hossman, V., Hummerich, W., and Konrads, H., 1980, The renin-kallikrein-prostaglandin system: Plasma active and inactive renin and urinary kallikrein during prostacyclin infusion in man, Prostaglandins Med. 5: 445.

    Article  PubMed  CAS  Google Scholar 

  181. Luetscher, J. A., Kraemer, F. B., Wilson, D. M., Schwartz, H. C., and Bryer-Ash, M. B., 1985, Increased plasma inactive renin in diabetes mellitus. A marker of microvascular complications, N. Engl. J. Med. 312: 1412–1417.

    Article  PubMed  CAS  Google Scholar 

  182. Nadler, J. L., Lee, F. O., Hsueh, W. A., and Horton, R., 1986, Evidence of prostacyclin deficiency in the syndrome of hyporeninemic hypoaldosteronism, N. Engl. J. Med. 314: 1015–1020.

    Article  PubMed  CAS  Google Scholar 

  183. Day, R. P. and Luetscher, J. A., 1974, Big renin: A possible prohormone in kidney and plasma of a patient with Wilm’s tumor, J. Clin. Endocrinol. Metab. 38: 923–926.

    Article  PubMed  CAS  Google Scholar 

  184. Galen, F. X., Guyenne, T. T., Devaux, C., Auzan, C., Corvol, P., and Menard, J., 1979, Direct radioimmunoassay of human renin, J. Clin. Endocrinol. Metab. 48: 1041–1043.

    Article  PubMed  CAS  Google Scholar 

  185. Yokosawa, H., Yokosawa, N., and Inagami, T., 1980, Specific antibody to human renal renin and its cross-reactivity with inactive human plasma prorenin (40897), Proc. Soc. Exp. Biol. Med. 164: 466–470.

    PubMed  CAS  Google Scholar 

  186. Bouhnik, J., Fehrentz, J. A., Galen, F. X., Seyer, R., Evin, G., Castro, B., Menard, J., and Corvol, P., 1985, Immunologic identification of both plasma and human renal inactive renin as prorenin, J. Clin. Endocrinol. Metab. 60: 399–401.

    Article  PubMed  CAS  Google Scholar 

  187. Atlas, S. A., Christofalo, P., Hesson, T., Sealey, J. E., and Fritz, L. C., 1985, Immunological evidence that inactive renin is prorenin, Biochem. Biophys. Res. Commun. 132: 1038–1045.

    Article  PubMed  CAS  Google Scholar 

  188. Kim, S. J., Hirose, S., Miyazaki, H., Ueno, N., Higashimori, K., Morinaga, S., Kimura, T., Kakakibara, S., and Murakami, K., 1985, Identification of plasma inactive renin as prorenin with a site-directed antibody, Biochem. Biophys. Res. Commun. 126: 641–645.

    Article  PubMed  CAS  Google Scholar 

  189. Fritz, L. C., Arfsten, A. E., Dzau, V. J., Atlas, S. A., Baxter, J. D., Fiddes, J. C., Shine, J., Cofer, C. L., Kushner, P., and Ponte, P. A., 1986, Characterization of human prorenin expressed in mammalian cells from cloned cDNA, Proc. Natl. Acad. Sci. USA 83: 4114–4118.

    Article  PubMed  CAS  Google Scholar 

  190. Hsueh, W. A., Do, J. S., Shinagawa, T., Tam, H., Ponte, P. A., Baxter, J. D., Shine, J., and Fritz, L. C., 1986, Biochemical similarity of expressed human prorenin and native inactive renin, Hypertension 8 (Suppl. II):II78–1183.

    Google Scholar 

  191. Laragh, J. H., 1973, Vasoconstriction-volume analysis for understanding and treating hypertension. The use of renin and aldosterone profiles, Am. J. Med. 55: 161.

    Article  Google Scholar 

  192. Kaplan, N. M., 1977, Renin profiles, the unfulfilled promises, JAMA 238: 611–613.

    Article  PubMed  CAS  Google Scholar 

  193. Haber, E., 1984, The first Sir George Pickering memorial lecture. Which inhibitors will give us true insight into what renin really does? J. Hypertension 2: 223–230.

    Article  CAS  Google Scholar 

  194. Hsueh, W. A., Luetscher, J. A., Carlson, E., and Greslis, G., 1978, Big renin in plasma of normal subjects on high-sodium intake, Lancet 1: 1281–1284.

    Article  PubMed  CAS  Google Scholar 

  195. Dzau, V. J., Gibbons, G. H., and Levin, D. C., 1983, Renovascular hypertension: An update on pathophysiology, diagnosis and treatment, Am. J. Nephrol. 3: 172–184.

    Article  PubMed  CAS  Google Scholar 

  196. Case, D. B. and Laragh, J. H., 1979, Reactive hyperreninemia in renovascular hypertension after angiotensin blockade with saralasin or converting enzyme inhibitor, Ann. Intern. Med. 91: 153–160.

    PubMed  CAS  Google Scholar 

  197. Strong, C. G., Hunt, J. C., Ships, S. G., Tucker, R. M., and Bernaty, P. E., 1971, Renal-venous renin activity, enhancement of sensitivity of catheterization by sodium depletion, Am. J. Cardiol. 27: 602–611.

    Article  PubMed  CAS  Google Scholar 

  198. Ruddy, M. C., Atlas, S. A., and Salerno, F. G., 1982, Hypertension associated with a renin-secreating adenocarcinoma of the pancreas, N. Engl. J. Med. 307: 993–995.

    Article  PubMed  CAS  Google Scholar 

  199. Baruch, D., Corvol, F., Alhenc-Gelas, F., Dufloux, M. A., Guyenne, T. T., Gaux, J. C., Raynaud, A., Brisset, J. M., Duclos, J. M., and Menard, J., 1984, Diagnosis and treatment of renin-secreating tumors: Report of three cases, Hypertension 6: 760–766.

    PubMed  CAS  Google Scholar 

  200. Hsueh, W. A., Luetscher, J. A., Carlson, E. J., Grislis, G., Fraze, E., and McHargue, A., 1982, Changes in active and inactive renin throughout pregnancy, J. Clin. Endocrinol. Metab. 54: (5): 1010–1016.

    Article  PubMed  CAS  Google Scholar 

  201. Symonds, E. M., Stanley, M. A., and Skinner, S. L., 1968, Production of renin by in vitro cultures of human chorion and uterine muscle, Nature 217: 1152–1153.

    Article  PubMed  CAS  Google Scholar 

  202. Carretero, O. A., 1976, The properties and possible role of reninlike enzymes in the uterus and amniotic fluid, in: Hypertension in Pregnancy ( M. D. Lindheimer, A. I., Katz, and F. P. Zuspan, eds.), Wiley, New York, p. 293.

    Google Scholar 

  203. Anderson, R. C., Herbert, P. N., and Mulrow, P. J., 1968, A comparison of properties of renin obtained from the kidney and uterus of the rabbit, Am. J. Physiol. 215: 774–778.

    PubMed  CAS  Google Scholar 

  204. Acker, G. M., Galen, F. X., Devaux, C., Foote, S., Papernik, E., Pesty, A., Menard, J., and Corvol, P., 1982, Human chorionic cells in primary culture: A model for renin biosynthesis, J. Clin. Endocrinol. Metab. 55: 902–909.

    Article  PubMed  CAS  Google Scholar 

  205. Lumbers, E. R., 1972, Activation of renin in human amniotic fluid by low pH, Enzymologia 40: 329.

    Google Scholar 

  206. Brar, H. S., Do, Y. S., Tam, H. B., Valenzuela, G. J., Murray, R. D., Longo, L. D., Yonekura, M. L., and Hsueh, W. A., 1986, Uteroplacental unit as a source of elevated circulating “prorenin” levels in normal pregnancy, Am. J. Obstet. Gynecol. 155: 1223–1226.

    PubMed  CAS  Google Scholar 

  207. Lindheimer, M. D. and Katz, A. I., 1983, Hypertension in pregnancy, in: Hypertension ( J. Genest, D. Kuchel, P. Hamet, and M. Cantin, eds.), McGraw-Hill, New York, pp. 889–913.

    Google Scholar 

  208. Brar, H. S., Kjos, S., Do, Y., Tam, H., Greenspoon, J. S., Yonekura, M. L., and Hsueh, W. A., 1986, Evidence of increased local active renin production in patients with severe pregnancy induced hypertension, 68th Endocrine Society Meeting, June, 1986 (Abstr.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Publishing Corporation

About this chapter

Cite this chapter

Campese, V.M., Hsueh, W. (1987). Recent Advances in the Role of the Renal Nervous System and Renin in Hypertension. In: Klahr, S., Massry, S.G. (eds) Contemporary Nephrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1859-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1859-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9037-7

  • Online ISBN: 978-1-4613-1859-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics