Recent Advances in the Role of the Renal Nervous System and Renin in Hypertension

  • Vito M. Campese
  • Willa Hsueh


Considerable evidence indicates that the kidneys play an important role in blood pressure regulation under a variety of physiologic conditions and in several forms of experimental, as well as human, hypertension. The kidneys can influence blood pressure homeostasis through a variety of afferent neurogenic as well as hormonal mechanisms, which include the renin-angiotensin system, prostaglandins, and the kallikrein-kinin system. The renal mechanisms, on the other hand, are under the influence of and, therefore, are regulated by arterial baroreceptors, cardiopulmonary mechanoreceptors, chemoreceptors, and the central nervous system. The purpose of this chapter is to critically analyze the most current views concerning the role of the renal neurogenic and the renin-angiotensin system under physiologic conditions and in the pathogenesis of hypertension.


Essential Hypertension Renal Blood Flow Active Renin Renal Denervation Urinary Sodium Excretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barajas, L, 1978, Innervation of the renal cortex, Fed. Proc. 37: 1192–1201.PubMedGoogle Scholar
  2. 2.
    Barajas, L. and Wang, P, 1979, Localization of tritiated norepinephrine in the renal arteriolar nerves, Anat. Rec. 195: 525–534.PubMedCrossRefGoogle Scholar
  3. 3.
    DiBona, G. F., 1977, Neurogenic regulation of renal tubular sodium reabsorption, Am. J. Physiol. 233: F73–F81.PubMedGoogle Scholar
  4. 4.
    Zimmerman, H. D., 1972, Elektronenmikroskopische befunde zur innervation des nephron nach untersuchungen an der fetalen nachniere des menschen, Z. Zellforsch. 129: 65–75.CrossRefGoogle Scholar
  5. 5.
    Dinerstein R. J., Jones, R. T., and Goldberg, L. I., 1983, Evidence for dopamine containing renal nerves, Fed. Proc. 42: 3005–3008.PubMedGoogle Scholar
  6. 6.
    Insel, P. A. and Snavely, M. D., 1981, Catecholamines and the kidney receptors and renal function, Annu. Rev. Physiol. 43: 625–636.PubMedCrossRefGoogle Scholar
  7. 7.
    Graham, R. M., Sagalowsky, A. I., Pettinger, W. A., Murphy, T., Gandler, T., and Sanford, S. E., 1980, Renal alpha receptors in experimental hypertension in the rat, Fed. Proc. 39: 497.Google Scholar
  8. 8.
    Pettinger, W. A., Sanchez, A., Saavedra, J., Haywood, J. R., Gandler, T., and Rodes, T., 1982, Altered alpha2-adrenergic receptor regulation in genetically hypertensive rats, Hypertension 4 ( Suppl. II ): II 188–11192.Google Scholar
  9. 9.
    Hoffman, B. B. and Lefkowitz, R. J., 1980, Radioligand binding studies of adrenergic receptors: New insights into molecular and physiological regulation, Annu. Rev. Pharmacol. Toxicol. 20: 581–608.PubMedCrossRefGoogle Scholar
  10. 10.
    Goldberg, L. I. and Weder, A. B., 1980, Connections between endogenous dopamine, dopamine receptors and sodium excretion: Evidences and hypotheses, Rec. Adv. Clin. Pharmacol. 2: 149–166.Google Scholar
  11. 11.
    Barajas, L. and Wang, P., 1975, Demonstration of acetylcholinesterase in the adrenergic nerves of the renal glomerular arterioles, J. Ultrastruct. Res. 53: 244–253.PubMedCrossRefGoogle Scholar
  12. 12.
    Thames, M. D. and Ballon, B. J., 1984, Occlusive summation of carotid and aortic baroreflexes in control of renal nerve activity, Am. J. Physiol. 246: H851–H857.PubMedGoogle Scholar
  13. 13.
    Karim, F., Kidd, C., Malpus, C. M., and Penna, P. E., 1972, Effects of stimulation of the left atrial receptors on sympathetic efferent nerve activity, J. Physiol. 227: 243–260.PubMedGoogle Scholar
  14. 14.
    Clement, D. L., Pelletier, C. L., and Shepherd, J. T., 1972, Role of vagal afferents in the control of renal sympathetic nerves in the rabbit, Circ. Res. 31: 824–830.PubMedGoogle Scholar
  15. 15.
    Thames, M. D., Waickman, L. A., and Abboud, F. M., 1980, Sensitization of cardiac receptors (vagal afferents) by intracoronary acetylstrophantidin, Am. J. Physiol. 239: H628–H635.PubMedGoogle Scholar
  16. 16.
    Mancia, G., Donald, D. E., and Shepherd, J. T., 1973, Inhibition of adrenergic outflow to peripheral blood vessels by vagal afferents from the cardiopulmonary region in the dog, Circ. Res. 33: 713–721.PubMedGoogle Scholar
  17. 17.
    Echtenkamp, S. F. and Gilmore, J. P., 1980, Intravascular mechanoreceptor modulation of renal sympathetic nerve activity in the cat, Am. J. Physiol. 238: H801–H808.PubMedGoogle Scholar
  18. 18.
    Skoog, P., Mansson, J., and Thoren, P., 1985, Changes in renal sympathetic outflow during hypotensive haemorrhage in rats, Acta Physiol. Scand. 125: 655–660.PubMedCrossRefGoogle Scholar
  19. 19.
    Thoren, P., 1979, Role of cardiac vagal c-fibers in cardiovascular control, Rev. Physiol. Biochem. Pharmacol. 86: 1–94.PubMedCrossRefGoogle Scholar
  20. 20.
    Reimann, K. A. and Weaver, L. C., 1980, Contrasting reflexes evoked by chemical activation of cardiac afferent nerves, Am. J. Physiol. 239: H316–H325.PubMedGoogle Scholar
  21. 21.
    DiBona, G. F., 1982, The functions of the renal nerves, Rev. Physiol. Biochem. Pharmacol. 34: 76–181.Google Scholar
  22. 22.
    McCall, R. B. and Gebber, G. L., 1976, Differential effect of baroreceptor reflexes and clonidine on frequency components of sympathetic discharge, Eur. J. Pharmacol. 36: 69–78.PubMedCrossRefGoogle Scholar
  23. 23.
    Friggi, A., Chevalier-Cholat, A. M., and Torresani, J., 1977, Reduction of efferent renal nerve activity by propranolol in rabbits, Acad. Sci. Comptes. Rendus. 284: 1835–1837.Google Scholar
  24. 24.
    Fukijama, K., 1972, Central action of angiotensin and hypertension. Increased central vasomotor outflow by angiotensin, Jpn. Circ. J. 36: 599–602.CrossRefGoogle Scholar
  25. 25.
    Bell, C. and Lang, W. J., 1973, Neural dopaminergic vasodilator control in the kidney, Nature 246: 27–29.Google Scholar
  26. 26.
    Barajas, L. and Wang, P., 1978, Myelinated nerves of the rat kidney, J. Ultrastruct. Res. 65: 148–162.CrossRefGoogle Scholar
  27. 27.
    Ueda, H. and Uchida, Y., 1968, Afferent impulses in the renal nerves, Jpn. Heart J. 9: 517–519.PubMedCrossRefGoogle Scholar
  28. 28.
    Niijima, A., 1971, Afferent discharges from arterial mechanoreceptors in the kidney of the rabbit, J. Physiol 219: 477–485.Google Scholar
  29. 29.
    Francisco, L. L., Hoversten, L. G., and DiBona, G. F., 1980, Renal nerves in the compensatory adaptation to ureteral occlusion, Am. J. Physiol 238: F229–F234.PubMedGoogle Scholar
  30. 30.
    Recordati, G. M., Moss, N. G., Genovesi, A., and Rogenes, P. R., 1980, Renal receptors in the rat sensitive to chemical alterations of their environment, Circ. Res. 46: 395–405.PubMedGoogle Scholar
  31. 31.
    Ciriello, J. and Calarsecu, F. R., 1980, Hypothalamic projections of renal afferent nerves in the cat, Can. J. Physiol Pharmacol 58: 574–576.PubMedCrossRefGoogle Scholar
  32. 32.
    Kopp, V. C., Smith, L. A., and DiBona, G., 1985, Renorenal reflex: Neural components of ipsilateral and contralateral renal responses, Am. J. Physiol 249: F507–F517.PubMedGoogle Scholar
  33. 33.
    Karim, F., Kidd, C., Malpus, C. M., and Penna, P. E., 1972, Effects of stimulation of the left atrial receptors on sympathetic efferent nerve activity, J. Physiol 227: 243–260.Google Scholar
  34. 34.
    Lloyd, T. C. and Friedman, J. J., 1977, Effect of a left atrium pulmonary vein baroreflex on peripheral vascular beds, Am. J. Physiol 233: H587–H591.PubMedGoogle Scholar
  35. 35.
    Thames, M. D. and Abboud, F. M., 1979, Reflex inhibition of renal sympathetic nerve activity during myocardial ischemia mediated by left ventricular receptors with vagal afferents in dogs, J. Clin. Invest. 63: 395–402.CrossRefGoogle Scholar
  36. 36.
    Niijima, A., 1976, Baroreceptor effects on renal and adrenal nerve activity, Am. J. Physiol 230: 1733–1736.Google Scholar
  37. 37.
    Aukland, K., 1976, Renal blood flow, in: International Review of Physiology; Kidney and Urinary Tract Physiology II, Volume 11 ( K. Turau, ed.), University Park Press, Baltimore, pp. 23–79.Google Scholar
  38. 38.
    Smith, H. W., Rovenstine, E. A., Goldring, W., Chasis, H., and Ranges, H. A., 1939, The effects of spinal anesthesia on the circulation in normal unoperated man with reference to the autonomy of the arterioles and especially those of renal circulation, J. Clin. Invest. 18: 319–341.CrossRefGoogle Scholar
  39. 39.
    Vatner, S. F., 1974, Effects of hemorrhage on regional blood flow distribution in dogs and primates, J. Clin. Invest. 54: 225–235.CrossRefGoogle Scholar
  40. 40.
    Gross, R., Ruffmann, K., and Kirchheim, H., 1979, The separate and combined influences of common carotid occlusion and nonhypotensive hemorrhage on kidney blood flow, Pflueger’s Arch. 379: 81–88.CrossRefGoogle Scholar
  41. 41.
    Mancia, G., Baccelli, G., and Zanchetti, A., 1974, Regulation of renal circulation during behavioral changes in the cat, Am. J. Physiol 227: 536–542.PubMedGoogle Scholar
  42. 42.
    Kirchheim, H., 1976, Systemic arterial baroreceptor reflexes, Physiol Rev. 56: 100–176.PubMedGoogle Scholar
  43. 43.
    Forsyth, R. P., 1971, Regional blood flow changes during 72-hour avoidance schedules in the monkey, Science 173: 546–548.PubMedCrossRefGoogle Scholar
  44. 44.
    Gross, R. and Kirchheim, H., 1980, Effects of bilateral carotid occlusion and auditory stimulation on renal blood flow and sympathetic nerve activity in the conscious dog, Pflüeger’s Arch. 383: 233–239.CrossRefGoogle Scholar
  45. 45.
    Sadowski, J., Kurkus, J., and Gellert, R., 1979, Denervated and intact kidney responses to saline load in awake and anesthetized dogs, Am. J. Physiol 237: F262–F267.PubMedGoogle Scholar
  46. 46.
    Hollenberg, N. K., Adams, D. F., Rashid, A., Epstein, M., Abrams, H. L., and Merrill, J. P., 1971, Renal vascular response to salt restriction in normal man. Evidence against adrenergic mediation, Circulation 43: 845–851.PubMedGoogle Scholar
  47. 47.
    Myers, B. D., Deen, W. D., and Brenner, B. M., 1975, Effects of norepinephrine and angiotensin II on the determinants of glomerular ultrafiltration and proximal tubule fluid reabsorption in the rat, Circ. Res. 37: 101–110.PubMedGoogle Scholar
  48. 48.
    Andreucci, V. E., Dal Canton, A., Corradi, A., Stanziale, R., and Migone, L., 1976, Role of the efferent arteriole in glomerular hemodynamics of superficial nephrons, Kidney Int. 9: 475–480.PubMedCrossRefGoogle Scholar
  49. 49.
    Click, R. L., Joyner, W. L., and Gilmore, J. P., 1979, Reactivity of glomerular afferent and efferent arterioles in renal hypertension, Kidney Int. 15: 109–115.PubMedCrossRefGoogle Scholar
  50. 50.
    Johns, E. J., 1980, A comparison of the ability of two angiotensin II receptor blocking drugs, 1-Sar, 8-ala angiotensin II and 1-sar, 8-ile angiotensin II, to modify the regulation of glomerular filtration rate in the cat, Br. J. Pharmacol. 71: 499–506.PubMedGoogle Scholar
  51. 51.
    Deis, R. P., and Alonso, N., 1970, Diuretic effect of dopamine in the rat, J. Endocr. 47: 129–130.PubMedCrossRefGoogle Scholar
  52. 52.
    Goldberg, L. I., 1972, Cardiovascular and renal actions of dopamine: Potential clinical applications. Pharmacol. Rev. 24: 1–29.PubMedGoogle Scholar
  53. 53.
    McDonald, R. H., Goldberg, L. I., McNay, J. L., and Tuttle, E. P., 1964, Effect of dopamine in man: Augmentation of sodium excretion, glomerular filtration rate and renal plasma flow, J. Clin. Invest. 43: 1116–1124.PubMedCrossRefGoogle Scholar
  54. 54.
    Bernard, C., 1859, Legons sur les Proprieties physiologique des Liquides de L’Organisme, Bailliere, Paris, p. 172.CrossRefGoogle Scholar
  55. 55.
    Bello-Reuss, E., 1980, Effect of catecholamines on fluid reabsorption by the isolated proximal convoluted tubule, Am. J. Physiol. 238: F347–F352.PubMedGoogle Scholar
  56. 56.
    Morgunov, N. and Baines, A. D., 1981, Renal nerves and catecholamine excretion, Am. J. Physiol. 240: F75–F81.PubMedGoogle Scholar
  57. 57.
    Bello-Reuss, E., Colindres, R. E., Pastoriza-Munoz, E., Mueller, R. A., and Gottschalk, C. W., 1975, Effects of acute unilateral renal denervation in the rat, J. Clin. Invest. 56: 208–217.CrossRefGoogle Scholar
  58. 58.
    Nomura, G., Takabatake, T., Arai, S., Uno, D., Shimao, M., and Hattori, N., 1977, Effect of acute unilateral renal denervation on tubular sodium reabsorption in the dog, Am. J. Physiol. 232: F16–F19.PubMedGoogle Scholar
  59. 59.
    Bencsath, P., Asztalos, B., Szalay, L., and Takacs, L., 1979, Renal handling of sodium after chronic renal sympathectomy in the anesthetized rat, Am. J. Physiol. 236: F513–F518.PubMedGoogle Scholar
  60. 60.
    Schneider, E., McLane-Vega, L., Hanson, R., Childers, J., and Gleason, S., 1978, Effect of chronic bilateral renal denervation on daily sodium excretion in the conscious dog, Fed. Proc. 37: 645.Google Scholar
  61. 61.
    DiBona, G. F. and Sawin, L. L., 1983, Renal nerves in renal adaptation to dietary sodium restriction, Am. J. Physiol. 245: F322–F328.PubMedGoogle Scholar
  62. 62.
    Wilcox, C. S., Aminoff, M. J., and Slater, J. D. H., 1977, Sodium homeostasis in patients with autonomic failure, Clin. Sci. Mol. Med. 53: 321–328.PubMedGoogle Scholar
  63. 63.
    Gill, J. R., and Bartter, F. C., 1966, Adrenergic nervous system in sodium metabolism. II: Effects of guanethidine on the renal response to sodium depravation in normal man, N. Engl J. Med. 275: 1466–1471.PubMedCrossRefGoogle Scholar
  64. 64.
    Osborn, J. L., Holdaas, H., Thames, M. D., and DiBona, G. F., 1983, Renal adrenoceptor mediation of antinatriuretic and renin secretion responses to low frequency renal nerve stimulation in the dog, Circ. Res. 53: 298–305.PubMedGoogle Scholar
  65. 65.
    Alexander, R. W., Gill, J. R., Yamabe, H., Lovenberg, W., and Reiser, H. R., 1975, Effects of dietary sodium and of acute saline infusion on the interrelationship between dopamine excretion and adrenergic activity in man, J. Clin. Invest. 54: 194–200.CrossRefGoogle Scholar
  66. 66.
    Romoff, M. S., Keusch, G., Campese, V. M., Wang, M. S., Friedler, R. M., Weidmann, P., and Massry, S. G., 1979, Effect of sodium intake on plasma catecholamines in normal subjects, J. Clin. Endocrinol Metab. 48: 26–31.PubMedCrossRefGoogle Scholar
  67. 67.
    Krishna, G. G., Danovitch. G. M., Beck, F. W. J., and Sowers, J. R., 1985, Dopaminergic mediation of the natriuretic response to volume expansion, J. Lab. Clin. Med. 105: 214–218.Google Scholar
  68. 68.
    Imbs, J. L., Schmidt, M., Ehrahardt, J. D., and Schwartz, J., 1984, The sympathetic nervous system and renal sodium handling: Is dopamine involved? J. Cardiovasc. Pharmacol 6 (Suppl. 1): S171–S175.PubMedCrossRefGoogle Scholar
  69. 69.
    Cuche, J. L., Marchand, G. R., Greger, R. F., Lang, F. C., and Knox, F. G., 1976, Phosphaturic effect of dopamine in dogs: Possible role of intrarenally produced dopamine in phosphate regulation, J. Clin. Invest. 58: 71–76.PubMedCrossRefGoogle Scholar
  70. 70.
    Harvey, J. N., Lasson, I. F., Clayden, A. D., Cope, G. F., Perkins, C. M., and Lee, M. R., 1984, A paradoxical fall in urine dopamine output when patients with essential hypertension are given added dietary salt, Clin. Sci. 67: 83–88.PubMedGoogle Scholar
  71. 71.
    Casson, J. F., Lee, M. R., Brownjohn, A. M., Parsons, F. M., Davison, A. M., Will, E. J., and Clayden, A. D., 1983, Failure of renal dopamine response to salt loading in chronic renal disease, Br. Med. J. 286: 503–506.CrossRefGoogle Scholar
  72. 72.
    Davis, J. O. and Freeman, R. H., 1976, Mechanisms regulating renin release, Physiol Rev. 56: 1–56.PubMedGoogle Scholar
  73. 73.
    DiBona, G. F., 1985, Neural regulation or renal tubular sodium reabsorption and renin secretion, Fed. Proc. 44: 2816–2822.PubMedGoogle Scholar
  74. 74.
    Katholi, R. E., 1983, Renal nerves in the pathogenesis of hypertension in experimental animals and humans, Am. J. Physiol 245: F1–F14.PubMedGoogle Scholar
  75. 75.
    Villareal, D., Freeman, R. H., Davis, J. O., Garoutte, G., and Sweet, W. D., 1984, Pathogenesis of one-kidney, one-clip hypertension in rats after renal denervation, Am. J. Physiol 247: H61–H66.Google Scholar
  76. 76.
    Brody, M. J. and Johnson, A. K., 1980, Role of the anteroventral third ventricle region in fluid and electrolyte balance, arterial pressure regulation and hypertension, in: Frontiers in Neuroendocrinology ( L. Martini and W. F. Ganong, eds.), Raven Press, New York, pp. 249–292.Google Scholar
  77. 77.
    Fink, G. D. and Brody, M. J., 1980, Impaired neurogenic control of renal vasculature in renal hypertensive rats, Am. J. Physiol 238: H770–H775.PubMedGoogle Scholar
  78. 78.
    Guyton, A. C., Coleman, T. G., Cowley, A. W. Jr., Scheel, K. W., Manning, R. D., Jr., and Norman, R. A., Jr., 1972, Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension, Am. J. Med. 52: 584–594.PubMedCrossRefGoogle Scholar
  79. 79.
    Blaustein, M. P., 1977, Sodium ions, calcium ions, blood pressure regulation and hypertension: A reassessment and a hypothesis, Am. J. Physiol. 232: 165–173.Google Scholar
  80. 80.
    Tobian, L., Johnson, M. A., Lange, J., and Magraw, S., 1975, Effect of varying perfusion pressures on the output of sodium and renin and the vascular resistance in kidney of rats with “post-salt” hypertension and Kyoto spontaneous hypertension, Circ. Res. 36 (Suppl. I): 161–170.Google Scholar
  81. 81.
    Dahl, L. K. and Heine, M., 1975, Primary role of renal homografts in setting blood pressure levels in rats, Circ. Res. 36: 692–696.PubMedGoogle Scholar
  82. 82.
    Kawabe, K., Watanabe, T. X., Shiono, K., and Sokabe, H., 1978, Influence of blood pressure of renal isografts between spontaneously hypertensive and normotensive rats, utilizing the Fi hybrids, Jpn. Heart J. 19: 886–893.PubMedCrossRefGoogle Scholar
  83. 83.
    Bianchi, G., Fox, U., DiFrancesco, G. F., Giovannetti, A. M., and Pagetti, D., 1974, Blood pressure changes produced by kidney cross-transplantation between spontaneously hypertensive rats (SHR) and normotensive rats (NR), Clin. Sci. Mol. Med. 47: 435–448.PubMedGoogle Scholar
  84. 84.
    Grim, C. E., Luft, F. C., Miller, J. Z., Brown, P. L., Gannon, M. A., and Weinberger, M. H., 1979, Effects of sodium loading and depletion in normotensive first-degree relatives of essential hypertension, J. Lab. Clin. Med. 94: 764–771.PubMedGoogle Scholar
  85. 85.
    Beierwalters, W. H., Arendshorst, W., and Klemmer, P. J., 1982, Electrolytes and water balance in young spontaneously hypertensive rats, Hypertension 4: 908–915.Google Scholar
  86. 86.
    Roman, R. J. and Cowley, A. W., Jr., 1985, Abnormal pressure-diuresis response in spontaneously hypertensive rats, Am. J. Physiol. 248: F199–F205.PubMedGoogle Scholar
  87. 87.
    Vanderwalle, A., Farman, N., and Bonvalet, J. P., 1978, Renal handling of sodium in Kyoto-Okamoto rats: A micropuncture study, Am. J. Physiol. 235: F394–F402.Google Scholar
  88. 88.
    Cangiano, J. L., Rodriguez-Sargent, C., Opava-Stitzer, S., and MartinezMaldonado, M., 1984, Renal Na+-K+-ATPase in weanling and adult spontaneously hypertensive rats, Proc. Soc. Exp. Biol. Med. 177: 240–246.PubMedGoogle Scholar
  89. 89.
    Liard, J. F., Tarazi, R. L., Ferrario, C. M., and Manner, W. M., 1975, Hemodynamic and humoral characteristics of hypertension induced by prolonged stellate ganglion stimulation in conscious dogs, Circ. Res. 36: 455–464.PubMedGoogle Scholar
  90. 90.
    Katholi, R. E., Carey, R. M., Ayers, C. R., Vaughan, E. D., Yancey, M. R., and Morton, C. L., 1977, Production of sustained hypertension by chronic intrarenal norepinephrine infusion in conscious dogs, Circ. Res. 40 (Suppl. I): I118–1126.PubMedGoogle Scholar
  91. 91.
    Nakamura, K., and Nakamura, K., 1977, Selective activation of sympathetic ganglia in young spontaneously hypertensive rats, Nature 266: 265–266.PubMedCrossRefGoogle Scholar
  92. 92.
    Okamoto, K., Nosako, S., Yamori, Y., and Matsumoto, M., 1967, Participation of renal factors in the pathogenesis of hypertension in the spontaneously hypertensive rat, Jpn. Heart J. 8: 168–180.PubMedCrossRefGoogle Scholar
  93. 93.
    Lundin, S. and Thoren, P., 1982, Renal function and sympathetic activity during mental stress in normotensive and spontaneously hypertensive rats, Acta Physiol Scand. 115: 115–124.PubMedCrossRefGoogle Scholar
  94. 94.
    Winternitz, S. R., Katholi, R. E., and Oparil, S., 1980, Role of the renal sympathetic nerves in the development and maintenance of hypertension in spontaneously hypertensive rat, J. Clin. Invest. 66: 971–978.PubMedCrossRefGoogle Scholar
  95. 95.
    Ricksten, S. E., Yao, T., DiBona, G. F., and Thoren, P., 1981, Renal nerve activity and exaggerated natriuresis in conscious spontaneously hypertensive rats, Acta Physiol Scand. 112: 161–167.PubMedCrossRefGoogle Scholar
  96. 96.
    Katholi, R. E., Naftilan, A. J., and Oparil, S., 1980, Importance of renal sympathetic tone in the development of DOCA-salt hypertension in the rat, Hypertension 2: 266–273.PubMedGoogle Scholar
  97. 97.
    Wallin, B. G., Delius, W., and Hagbarth, K. E., 1973, Comparison of sympathetic nerve activity in normotensive and hypertensive subjects, Circ. Res. 33: 9–21.PubMedGoogle Scholar
  98. 98.
    Brown, M. J., Jenner, D. A., Allison, D. J., and Dollery, C. T., 1981, Variations in individual organ release of noradrenaline measured by an improved radioenzymatic technique: Limitations of peripheral nervous measurements in the assessment of sympathetic nervous activity, Clin. Sci. 61: 585–590.PubMedGoogle Scholar
  99. 99.
    Gribbin, B., Pickering, T. G., Slight, P., and Peto, R., 1971, Effect of age and high blood pressure on baroreflex sensitivity in man, Circ. Res. 29: 424–431.PubMedGoogle Scholar
  100. 100.
    Krieger, E. M., 1976, Time course of baroreceptor resetting in acute hypertension, Am. J. Physiol 218: 486–490.Google Scholar
  101. 101.
    Tarazi, R. C. and Dustan, H. P., 1973, Neurogenic participation in essential and renovascular hypertension assessed by acute ganglionic blockade: Correlation with haemodynamic indices and intravascular volume, Clin. Sci. 44: 197–212.PubMedGoogle Scholar
  102. 102.
    Goldstein, D. J., 1981, Plasma norepinephrine in essential hypertension: A study of the studies, Hypertension 3: 48–52.PubMedGoogle Scholar
  103. 103.
    Goldstein, D. J., 1981, Plasma norepinephrine during stress in essential hypertension. A study of the studies, Hypertension 3: 551–556.PubMedGoogle Scholar
  104. 104.
    Franco-Morselli, R., Elghozi, J. L., Joly, E., DiGiulio, S., and Meyer, P., 1977, Increased plasma adrenaline concentrations in benign essential hypertension, Br. Med. J. 2: 1251–1254.PubMedCrossRefGoogle Scholar
  105. 105.
    Lake, C. R., Gullner, H. G., Polinsky, R. J., Ebert, M. H., Ziegler, M. G., and Bartter, F. C., 1981, Essential hypertension: Central and peripheral norepinephrine, Science 211: 955–957.PubMedCrossRefGoogle Scholar
  106. 106.
    Esler, M., Jackman, G., Bobix, A., Leonard, P., Kelleher, D., Skews, H., Jennings, G., and Korner, P., 1981, Norepinephrine kinetics in essential hypertension. Defective neuronal uptake of norepinephrine in some patients, Hypertension 3: 149–156.PubMedGoogle Scholar
  107. 107.
    Goldstein, D. S., Horwitz, D., Keiser, H. R., and Polinsky, R. J., 1983, Plasma 1-[3H] norepinephrine, d-[14C] norepinephrine, and d, 1-[3H] isoproterenol kinetics in essential hypertension, J. Clin. Invest. 72: 1748–1758.PubMedCrossRefGoogle Scholar
  108. 108.
    Campese, V. M., Myers, H. R., and DeQuattro, V., 1980, Neurogenic factors in low renin essential hypertension, Am. J. Med. 69: 83–91.PubMedCrossRefGoogle Scholar
  109. 109.
    Louis, W. J., Doyle, A. E., and Anavekar, S., 1973, Plasma norepinephrine levels in essential hypertension, N. Engl. J. Med. 288: 559–601.CrossRefGoogle Scholar
  110. 110.
    Campese, V. M., Romoff, M., Telfer, N., Wiedmann, P., and Massry, S. G., 1980, Role of sympathetic nerve inhibition and body sodium volume state in the antihypertensive action of clonidine in essential hypertension, Kidney Int. 18: 351–357.PubMedCrossRefGoogle Scholar
  111. 111.
    Gomez, D. M., 1951, Evaluation of renal resistance with special reference to changes in essential hypertension, J. Clin. Invest. 30: 1143–1153.PubMedCrossRefGoogle Scholar
  112. 112.
    Hollenberg, N. K. and Adams, D. F., 1976, The renal circulation in hypertensive disease, Am. J. Med. 60: 773–784.PubMedCrossRefGoogle Scholar
  113. 113.
    Sullivan, J. M., Adams, D. F., and Hollenberg, N. K., 1976, p-Adrenergic blockade in essential hypertension: Reduced renin release despite renal vasoconstriction, Circ. Res. 39: 532 - 536.Google Scholar
  114. 114.
    DeLeeuw, P. W. and Birkenhager, W. H., 1982, Renal response to propranolol treatment in hypertensive humans, Hypertension 4: 125–131.Google Scholar
  115. 115.
    Dahl, L. K., 1961, Possible role of chronic excess salt consumption in the pathogenesis of essential hypertension, Am. J. Cardiol. 8: 571–575.CrossRefGoogle Scholar
  116. 116.
    Tobian, L., 1983, Salt and hypertension, Am. J. Nephrol. 3: 80–87.PubMedCrossRefGoogle Scholar
  117. 117.
    Kawasaki, T., Delea, C. S., Bartter, F. C., and Smith, H., 1978, The effect of high-sodium and low-sodium intakes on blood pressure and other related variables in human subjects with idiopathic hypertension, Am. J. Med. 64: 193–198.PubMedCrossRefGoogle Scholar
  118. 118.
    Campese, V. M., Romoff, M. S., Levitan, D., Saglikes, Y., Friedler, R. M., and Massry, S. G., 1982, Abnormal relationship between sodium intake and sympathetic nervous activity in salt-sensitive patients with essential hypertension, Kidney Int. 21: 371–378.PubMedCrossRefGoogle Scholar
  119. 119.
    Aoki, K., Yamori, Y., Ooshima, A., and Okamoto, K., 1972, Effect of high or low sodium intake in spontaneously hypertensive rats, Jpn. Circ. J. 36: 539–545.PubMedCrossRefGoogle Scholar
  120. 120.
    Falkner, B., Onesti, G., and Hayes, P., 1981, The role of sodium in essential hypertension in genetically hypertensive adolescents, in: Hypertension in the Young and the Old ( G. Onesti and K. E. Kim, eds.), Grune & Stratton, New York, pp. 29–35.Google Scholar
  121. 121.
    Winternitz, S. R. and Oparil, S., 1982, Sodium-neural interactions in the development of spontaneous hypertension, Clin. Exp. Hypertension A4: 751–760.CrossRefGoogle Scholar
  122. 122.
    Dietz, R., Schomig, A., Rascher, W., Strasser, R., and Kubler, W., 1980, Enhanced sympathetic activity caused by salt loading in spontaneously hypertensive rats, Clin. Sci. 59: 171s–l73s.PubMedGoogle Scholar
  123. 123.
    Takeshita, A., Mark, A. L., and Brody, M. J., 1979, Prevention of salt-induced hypertension in Dahl strain by 6-hydroxydopamine, Am. J. Physiol. 236: H48–H52.PubMedGoogle Scholar
  124. 124.
    Ikeda, T., Tobian, L., Iwai, J., and Goossens, P., 1978, Central nervous system pressor responses in rats susceptible and resistant to sodium chloride hypertension, Clin. Sci. Mol. Med. 55: 225s–227s.Google Scholar
  125. 125.
    Koepke, J. P. and DiBona, G. F., 1985, High sodium intake enhances renal nerve and antinatriuretic responses to stress in spontaneously hypertensive rats, Hypertension 7: 357–363.PubMedGoogle Scholar
  126. 126.
    Heistad, D. D., Abboud, F. M., and Ballard, D. R., 1971, Relationship between plasma sodium concentration and vascular reactivity in man, J. Clin. Invest. 50: 2022–2032.CrossRefGoogle Scholar
  127. 127.
    Dietz, R., 1983, The role of potassium in hypertension, Am. J. Nephrol. 3: 100–108.PubMedCrossRefGoogle Scholar
  128. 128.
    Peach, M. J., 1977, Renin-angiotensin system: Biochemistry and mechanisms of action, Physiol Rev. 57: 313–370.PubMedGoogle Scholar
  129. 129.
    Brunner, H., Chang, P., Wallach, R., Sealy, J. E., and Laragh, J. H., 1972, Angiotensin II vascular receptors: Their avidity and relationship to sodium balance, the autonomic nervous system and hypertension, J. Clin. Invest. 51: 58–67.PubMedCrossRefGoogle Scholar
  130. 130.
    Peart, W. S., 1975, Renin-angiotensin system, N. Engl. J. Med. 292: 302–306.PubMedCrossRefGoogle Scholar
  131. 131.
    Malvin, R. L., 1971, Possible role of the renin-angiotensin system in regulation of antidiuretic hormone section, Fed. Proc. 30: 1383–1386.PubMedGoogle Scholar
  132. 132.
    Re, R. N., 1984, Cellular biology of the renin-angiotensin systems, Arch. Intern. Med. 144: 2037–2041.PubMedCrossRefGoogle Scholar
  133. 133.
    Alexander, R. W. and Gimbrone, M. A., 1976, Stimulation of prostaglandin E synthesis in cultured human umbilical vein smooth muscle cells, Proc. Natl. Acad. Sci. USA 73: 1617–1620.PubMedCrossRefGoogle Scholar
  134. 134.
    DeFronzo, R., 1980, Hyperkalemia and hyporeninemic hypoaldosteronism, Kidney Int. 17:118–134.Google Scholar
  135. 135.
    DeLeiva, A., Christlieb, A. R., Melby, J. C., Graham, C. A., Day, R. P., Leutscher, J. A., and Zager, P. G., 1976, Big renin and biosynthetic defect of aldosterone in diabetes mellitus, N. Engl. J. Med. 295: 639–643.PubMedCrossRefGoogle Scholar
  136. 136.
    Hsueh, W. A., Goldstone, R., Mongeon, R. L., and Carlson, E. J., Impaired conversion of prorenin to renin in diabetes mellitus (submitted, 1987 ).Google Scholar
  137. 137.
    Hsueh, W. A., 1984, Potential role of renin activation in renin secretion, Am. J. Physiol. 247: F205–F212.PubMedGoogle Scholar
  138. 138.
    Atlas, S. A., Laragh, J. H., Sealey, J. E., and Moon, C., 1977, Plasma renin and “prorenin” in essential hypertension during sodium depletion, betablockade, and reduced arterial pressure, Lancet 2: 785–788.PubMedCrossRefGoogle Scholar
  139. 139.
    Poulsen, K., Vuust, J., and Lund, T., 1980, Renin precursor from mouse kidney identified by cell-free translation of messenger RNA, Clin. Sci. 59: 297–299.PubMedGoogle Scholar
  140. 140.
    Lingappa, V. R. and Blobel, G., 1980, Early events in the biosynthesis of secretory and membrane proteins: The signal hypothesis, Rec. Prog. Horm. Res. 36: 451–474.PubMedGoogle Scholar
  141. 141.
    Catanzaro, D. F., Mullins, J. J., and Morris, B. J., 1983, The biosynthetic pathway of renin in mouse submandibular gland, J. Biol. Chem. 258: 7364–7368.PubMedGoogle Scholar
  142. 142.
    Pratt, R. E., Quellette, A. J., and Dzau, V. J., 1983, Biosynthesis of renin: Multiplicity of active and intermediate forms, Proc. Natl. Acad. Sci. USA 80: 6809–6813.PubMedCrossRefGoogle Scholar
  143. 143.
    Panthier, J. J., Foote, S., Chambrand, B., Strosberg, A. D., Corvol, P., and Rougeon, F., 1982, Complete amino acid sequence and maturation of the mouse submaxillary gland renin precursor, Nature 298: 90–92.PubMedCrossRefGoogle Scholar
  144. 144.
    Misono, K. S., Chang, J. J., and Inagami, T., 1982, Amino acid sequence of mouse submaxillary gland renin, Proc. Natl. Acad. Sci. USA 79: 4858 - 4862.PubMedCrossRefGoogle Scholar
  145. 145.
    Pratt, R. E. and Dzau, V. J., 1984, Purification and characterization of one-chain and two-chain renins from mouse submandibular gland, Hypertension 6(Suppl. I):I–101–I-105.Google Scholar
  146. 146.
    Corvol, P., Galen, F. X., Devaux, C., Menard, J., and Corvol, M. T., 1984, Renin biosynthesis by human tumoral juxtaglomerular cells: Evidence for a renin precursor, J. Clin. Invest. 73: 1144–1155.PubMedCrossRefGoogle Scholar
  147. 147.
    Atlas, S. A., Hesson, T. E., Sealey, J. E., Dharmgrongartama, B., Laragh, J. H., Ruddy, M. C., and Aurell, M., 1984, Characterization of inactive renin (prorenin) from renin-secreting tumprs of nonrenal origin, J. Clin. Invest. 73: 437–447.PubMedCrossRefGoogle Scholar
  148. 148.
    Imai, T., Miyazaki, H., Hirose, S., Hori, H., Hayashi, T., Kageyama, R., Ohkubo, H., Nakanishi, S., and Murakami, K., 1983, Cloning and sequence analysis of cDNA for human renin precursor, Proc. Natl. Acad. Sci. USA 80: 7405–7409.PubMedCrossRefGoogle Scholar
  149. 149.
    Soubrier, F., Panthier, J. T., Corvol, P., and Rougeon, F., 1983, Molecular cloning and nucleotide sequence of a human renin cDNA fragment, Nucl. Acid Res. 20: 7181.CrossRefGoogle Scholar
  150. 150.
    Shinagawa, T., Hsueh, W. A., Do, Y. S., and Tam, H., 1986, Purification and aminoterminal sequence of human renal renin, Biochem. Biophys. Res. Commun. 139: 446–454.PubMedCrossRefGoogle Scholar
  151. 151.
    Steiner, D. F., Docherty, K., and Carroll, R., 1984, Golgi/granule processing of peptide hormone and neuropeptide precursors: A minireview, J. Cell Biochem. 24: 121.PubMedCrossRefGoogle Scholar
  152. 152.
    Loh, Y. P., Brownstein, M. J., and Gainer, H., 1984, Proteolysis in neuropeptide processing and other neural functions, Annu. Rev. Neurosci. 7: 189.PubMedCrossRefGoogle Scholar
  153. 153.
    Sealey, J. E., Atlas, S. A., and Laragh, J. H., 1980, Prorenin and other large molecular weight forms of renin, Endocr. Rev. 1: 365.PubMedCrossRefGoogle Scholar
  154. 154.
    Sealey, J. E., Atlas, S. A., Laragh, J. H., Oxa, N. B., and Ryan, J. W., 1978, Human urinary kallikrein converts inactive to active renin and is a possible physiological activator of renin, Nature 275: 144–145.PubMedCrossRefGoogle Scholar
  155. 155.
    Sealey, J. E., 1980, Prorenin activation by renal and plasma kallikreins, in: Enzymatic Release of Vasoactive Peptides ( F. Gross and G. Vogel eds.), Raven Press, New York, p. 117.Google Scholar
  156. 156.
    Margolius, H. S., Horwitz, D., Geller, R. G., Alexander, R. W., Gill, Jr. J. R., Pisano, J. J., and Reiser, H. R., 1974, Urinary kallikrein excretion in normal man. Relationship to sodium intake and sodium retaining steroids, Cir. Res. 35: 812–819.Google Scholar
  157. 157.
    Suzuki, S., Franco-Saenz, R., Tan, S. Y., and Mulrow, P. J., 1980, Direct action of rat urinary kallikrein on rat kidney to release renin, J. Clin. Invest. 66: 757–762.PubMedCrossRefGoogle Scholar
  158. 158.
    Orstavik, T. B., Nustau, K., and Brandtzaeg, P., 1979, Origin of kallikrein in rat and human exocrine glands and kidney, Clin. Sci. 57: 239s–241s.PubMedGoogle Scholar
  159. 159.
    Hsueh, W. A., Carlson, E. J., O’Connor, D., and Warren, S., 1980, Renin requires a structural alteration prior to activation by renal kallikrein, J. Clin. Endocrinol. Metab. 51: 942–944.CrossRefGoogle Scholar
  160. 160.
    Inagami, T., Okamoto, H., Ohtsuki, K., Shimamoto, K., Chao, J., and Margolius, H. S., 1982, Human plasma inactive renin: Purification and activation by proteases, J. Clin. Endocrinol. Metab. 55: 619–627.PubMedCrossRefGoogle Scholar
  161. 161.
    Leutscher, J. A., Bialek, J. W., and Grislis, G., 1982, Human kidney cathepsins B and H activate and lower the molecular weight of human inactive renin, Clin. Exp. Hyper. Theory Pract. A4 (ll + 12): 2149.CrossRefGoogle Scholar
  162. 162.
    Takahashi, S., Murkami, K., and Mujake, Y., 1982, Activation of kidney prorenin by kidney cathespin B isozyme, J. Biochem. 9: 419.Google Scholar
  163. 163.
    Inagaki, T., Ohtsuki, K., and Inagami, T., 1983, Mouse submaxillary renin has a protease activity and converts human plasma inactive prorenin to an active form, J. Biol. Chem. 258: 7476–7480.Google Scholar
  164. 164.
    Oates, J., Whorton, R., Gerkins, J., Banch, R., Hollifield, J., and Frolich, J., 1979, The participation of prostaglandins in control of renin release, Fed. Proc. 38: 72–74.PubMedGoogle Scholar
  165. 165.
    Horton, R., 1981, Prostaglandins and the renin-angiotensin system, Miner. Electrolyte Metab. 6: 1–8.Google Scholar
  166. 166.
    Patrono, C., Pugliese, F., Ciabattoni, G., Patrignani, P., Maseri, A., Chierchia, S., Peskar, B. A., Cinotti, G. A., Simenetti, B. M., and Pierucci, A., 1982, Evidence for a direct stimulatory effect of prostacyclin in renin release in man, J. Clin. Invest. 69: 231–239.PubMedCrossRefGoogle Scholar
  167. 167.
    Vandongen, R. and Peart, W. S., 1974, Calcium dependence on the inhibitory effect of angiotensin on renin secretion in the isolated perfused kidney of the rat, Br. J. Pharmacol. 50: 125–129.Google Scholar
  168. 168.
    Rasmussen, H. and Barrett, P. Q., 1984, Calcium messenger system: An integrated view, Physiol. Rev. 64: 938–984.PubMedGoogle Scholar
  169. 169.
    Keeton, T. K. and Campbell, W. B., 1980, The pharmacologic alteration of renin release, Pharmacol. Rev. 32: 91–227.Google Scholar
  170. 170.
    Poulsen, K. and Jacobsen, J., 1983, Renin precursors, J. Hypertension 1: 3–5.Google Scholar
  171. 171.
    Hsueh, W. A., Carlson, E. J., and Dzau, V., 1983, Characterization of inactive renin from human kidney and plasma: Evidence for a renal source of circulating inactive renin, J. Clin. Invest. 71: 506–517.CrossRefGoogle Scholar
  172. 172.
    Goldstone, R., Horton, R., Carson, E. J., and Hsueh, W. A., 1983, Reciprocal changes in active and inactive renin after converting enzyme inhibition in normal man, J. Clin. Endocrinol. Metab. 56: 264–268.PubMedCrossRefGoogle Scholar
  173. 173.
    Derkx, F. H. M., Wenting, G. J., Man In’t Veld, A. J., Gool, J. M. G., Verhoeven, R. P., and Schalekamp, M. A. H. D., 1976, Inactive renin in human plasma, Lancet 2: 496–498.Google Scholar
  174. 174.
    Derkx, F. H. M., Tan-Tjiong, H., Man In’t Veld, A. D., and Schalekamp, M. A. D. H., 1983, Asynchronous changes in prorenin and renin secretion after captopril in patients with renal artery stenosis, Hypertension 5: 244.Google Scholar
  175. 175.
    Glorioso, N., Dessi-Fulgheri, P., Madeddu, P., Fois, G., Palermo, M., Cocco, F., Dettori, S., and Rappelli, A., 1984, Active and inactive renin after a single dose of captopril in hypertensive subjects, Am. J. Cardiol. 49: 1552–1554.CrossRefGoogle Scholar
  176. 176.
    Millar, J. A., Hammat, M. T., and Johnston, C. I., 1981, Effect of inhibition of converting enzyme on inactive renin in the circulation of salt-replete and salt-deplete normal subjects, J. Endocrinol. 86: 329–335.CrossRefGoogle Scholar
  177. 177.
    Sealey, J. E., Overlack, A., Laragh, J. H., Stumpe, K. O., and Atlas, S. A., 1981, Effect of captopril and aprotinin on inactive renin, J. Clin. Endocrinol. Metab. 53: 626–630.PubMedCrossRefGoogle Scholar
  178. 178.
    Dzau, V. J., Sands, K., Dunckel, P., and Wilcox, C. S., 1983, Release of active and inactive renin into plasma and lymph of dog kidneys, Clin. Res. 31: 328A.Google Scholar
  179. 179.
    Hseuh, W. A., Goldstone, R., Carlson, E. J., and Horton, R., 1985, Evidence that the p-adrenergic system and prostaglandins stimulate renin release through different mechanisms, J. Clin. Endocrinol. Metab. 61: 399–403.CrossRefGoogle Scholar
  180. 180.
    Fitzgerald, G. A., Hossman, V., Hummerich, W., and Konrads, H., 1980, The renin-kallikrein-prostaglandin system: Plasma active and inactive renin and urinary kallikrein during prostacyclin infusion in man, Prostaglandins Med. 5: 445.PubMedCrossRefGoogle Scholar
  181. 181.
    Luetscher, J. A., Kraemer, F. B., Wilson, D. M., Schwartz, H. C., and Bryer-Ash, M. B., 1985, Increased plasma inactive renin in diabetes mellitus. A marker of microvascular complications, N. Engl. J. Med. 312: 1412–1417.PubMedCrossRefGoogle Scholar
  182. 182.
    Nadler, J. L., Lee, F. O., Hsueh, W. A., and Horton, R., 1986, Evidence of prostacyclin deficiency in the syndrome of hyporeninemic hypoaldosteronism, N. Engl. J. Med. 314: 1015–1020.PubMedCrossRefGoogle Scholar
  183. 183.
    Day, R. P. and Luetscher, J. A., 1974, Big renin: A possible prohormone in kidney and plasma of a patient with Wilm’s tumor, J. Clin. Endocrinol. Metab. 38: 923–926.PubMedCrossRefGoogle Scholar
  184. 184.
    Galen, F. X., Guyenne, T. T., Devaux, C., Auzan, C., Corvol, P., and Menard, J., 1979, Direct radioimmunoassay of human renin, J. Clin. Endocrinol. Metab. 48: 1041–1043.PubMedCrossRefGoogle Scholar
  185. 185.
    Yokosawa, H., Yokosawa, N., and Inagami, T., 1980, Specific antibody to human renal renin and its cross-reactivity with inactive human plasma prorenin (40897), Proc. Soc. Exp. Biol. Med. 164: 466–470.PubMedGoogle Scholar
  186. 186.
    Bouhnik, J., Fehrentz, J. A., Galen, F. X., Seyer, R., Evin, G., Castro, B., Menard, J., and Corvol, P., 1985, Immunologic identification of both plasma and human renal inactive renin as prorenin, J. Clin. Endocrinol. Metab. 60: 399–401.PubMedCrossRefGoogle Scholar
  187. 187.
    Atlas, S. A., Christofalo, P., Hesson, T., Sealey, J. E., and Fritz, L. C., 1985, Immunological evidence that inactive renin is prorenin, Biochem. Biophys. Res. Commun. 132: 1038–1045.PubMedCrossRefGoogle Scholar
  188. 188.
    Kim, S. J., Hirose, S., Miyazaki, H., Ueno, N., Higashimori, K., Morinaga, S., Kimura, T., Kakakibara, S., and Murakami, K., 1985, Identification of plasma inactive renin as prorenin with a site-directed antibody, Biochem. Biophys. Res. Commun. 126: 641–645.PubMedCrossRefGoogle Scholar
  189. 189.
    Fritz, L. C., Arfsten, A. E., Dzau, V. J., Atlas, S. A., Baxter, J. D., Fiddes, J. C., Shine, J., Cofer, C. L., Kushner, P., and Ponte, P. A., 1986, Characterization of human prorenin expressed in mammalian cells from cloned cDNA, Proc. Natl. Acad. Sci. USA 83: 4114–4118.PubMedCrossRefGoogle Scholar
  190. 190.
    Hsueh, W. A., Do, J. S., Shinagawa, T., Tam, H., Ponte, P. A., Baxter, J. D., Shine, J., and Fritz, L. C., 1986, Biochemical similarity of expressed human prorenin and native inactive renin, Hypertension 8 (Suppl. II):II78–1183.Google Scholar
  191. 191.
    Laragh, J. H., 1973, Vasoconstriction-volume analysis for understanding and treating hypertension. The use of renin and aldosterone profiles, Am. J. Med. 55: 161.CrossRefGoogle Scholar
  192. 192.
    Kaplan, N. M., 1977, Renin profiles, the unfulfilled promises, JAMA 238: 611–613.PubMedCrossRefGoogle Scholar
  193. 193.
    Haber, E., 1984, The first Sir George Pickering memorial lecture. Which inhibitors will give us true insight into what renin really does? J. Hypertension 2: 223–230.CrossRefGoogle Scholar
  194. 194.
    Hsueh, W. A., Luetscher, J. A., Carlson, E., and Greslis, G., 1978, Big renin in plasma of normal subjects on high-sodium intake, Lancet 1: 1281–1284.PubMedCrossRefGoogle Scholar
  195. 195.
    Dzau, V. J., Gibbons, G. H., and Levin, D. C., 1983, Renovascular hypertension: An update on pathophysiology, diagnosis and treatment, Am. J. Nephrol. 3: 172–184.PubMedCrossRefGoogle Scholar
  196. 196.
    Case, D. B. and Laragh, J. H., 1979, Reactive hyperreninemia in renovascular hypertension after angiotensin blockade with saralasin or converting enzyme inhibitor, Ann. Intern. Med. 91: 153–160.PubMedGoogle Scholar
  197. 197.
    Strong, C. G., Hunt, J. C., Ships, S. G., Tucker, R. M., and Bernaty, P. E., 1971, Renal-venous renin activity, enhancement of sensitivity of catheterization by sodium depletion, Am. J. Cardiol. 27: 602–611.PubMedCrossRefGoogle Scholar
  198. 198.
    Ruddy, M. C., Atlas, S. A., and Salerno, F. G., 1982, Hypertension associated with a renin-secreating adenocarcinoma of the pancreas, N. Engl. J. Med. 307: 993–995.PubMedCrossRefGoogle Scholar
  199. 199.
    Baruch, D., Corvol, F., Alhenc-Gelas, F., Dufloux, M. A., Guyenne, T. T., Gaux, J. C., Raynaud, A., Brisset, J. M., Duclos, J. M., and Menard, J., 1984, Diagnosis and treatment of renin-secreating tumors: Report of three cases, Hypertension 6: 760–766.PubMedGoogle Scholar
  200. 200.
    Hsueh, W. A., Luetscher, J. A., Carlson, E. J., Grislis, G., Fraze, E., and McHargue, A., 1982, Changes in active and inactive renin throughout pregnancy, J. Clin. Endocrinol. Metab. 54: (5): 1010–1016.PubMedCrossRefGoogle Scholar
  201. 201.
    Symonds, E. M., Stanley, M. A., and Skinner, S. L., 1968, Production of renin by in vitro cultures of human chorion and uterine muscle, Nature 217: 1152–1153.PubMedCrossRefGoogle Scholar
  202. 202.
    Carretero, O. A., 1976, The properties and possible role of reninlike enzymes in the uterus and amniotic fluid, in: Hypertension in Pregnancy ( M. D. Lindheimer, A. I., Katz, and F. P. Zuspan, eds.), Wiley, New York, p. 293.Google Scholar
  203. 203.
    Anderson, R. C., Herbert, P. N., and Mulrow, P. J., 1968, A comparison of properties of renin obtained from the kidney and uterus of the rabbit, Am. J. Physiol. 215: 774–778.PubMedGoogle Scholar
  204. 204.
    Acker, G. M., Galen, F. X., Devaux, C., Foote, S., Papernik, E., Pesty, A., Menard, J., and Corvol, P., 1982, Human chorionic cells in primary culture: A model for renin biosynthesis, J. Clin. Endocrinol. Metab. 55: 902–909.PubMedCrossRefGoogle Scholar
  205. 205.
    Lumbers, E. R., 1972, Activation of renin in human amniotic fluid by low pH, Enzymologia 40: 329.Google Scholar
  206. 206.
    Brar, H. S., Do, Y. S., Tam, H. B., Valenzuela, G. J., Murray, R. D., Longo, L. D., Yonekura, M. L., and Hsueh, W. A., 1986, Uteroplacental unit as a source of elevated circulating “prorenin” levels in normal pregnancy, Am. J. Obstet. Gynecol. 155: 1223–1226.PubMedGoogle Scholar
  207. 207.
    Lindheimer, M. D. and Katz, A. I., 1983, Hypertension in pregnancy, in: Hypertension ( J. Genest, D. Kuchel, P. Hamet, and M. Cantin, eds.), McGraw-Hill, New York, pp. 889–913.Google Scholar
  208. 208.
    Brar, H. S., Kjos, S., Do, Y., Tam, H., Greenspoon, J. S., Yonekura, M. L., and Hsueh, W. A., 1986, Evidence of increased local active renin production in patients with severe pregnancy induced hypertension, 68th Endocrine Society Meeting, June, 1986 (Abstr.).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Vito M. Campese
    • 1
  • Willa Hsueh
    • 1
  1. 1.Divisions of Nephrology and Endocrinology, Department of MedicineUniversity of Southern California School of MedicineLos AngelesUSA

Personalised recommendations