Nutrition in Renal Disease

  • Wilfred Druml
  • William E. Mitch


In the last 2 years, there has been a renaissance of interest in low-protein diets in the treatment of chronic renal failure (CRF), due mainly to suggestions that a low-protein intake may slow or even halt progression of renal insufficiency. It also has become apparent that other modifications of the diet, including phosphate restriction, altering the proportions of fatty acids, or adding polyunsaturated fatty acids, might have considerable impact on the course of the disease and the metabolism of the patient. Unfortunately, the optimal intake for most nutrients in renal failure, including amino acids, vitamins, and trace elements, remains undefined. Many descriptive studies have appeared, but our understanding of the pathophysiology is still limited.


Nephrotic Syndrome Acute Renal Failure Chronic Renal Failure Dialysis Patient Continuous Ambulatory Peritoneal Dialysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mitch, W. E., 1984, The influence of the diet on the progression of renal insufficiency, Annu. Rev. Med. 35: 249.PubMedGoogle Scholar
  2. 2.
    Maroni, B. J., Steinman, T. I., and Mitch, W. E., 1985, A method for estimating nitrogen intake of patients with chronic renal failure, Kidney Int. 27: 58.PubMedGoogle Scholar
  3. 3.
    Alvestrand, A., Bucht, H., Gutierrez, A., and Bergstrom, J., 1985, Progression of chronic renal failure in man as influenced by frequency and quality of clinical follow-up, Kidney Int. 27: 240.Google Scholar
  4. 4.
    Remuzzi, G., Zoja, C., Remuzzi, A., Rossini, M., Battagha, C., Broggini, M., and Bestani, T., 1985, Low-protein diet prevents glomerular damage in Adriamycin-treated rats, Kidney Int. 28:21.Google Scholar
  5. 5.
    Kenner, C. H., Evan, A. P., Blomgren, P., Arnoff, G. P., and Luft, F. C., 1985, Effect of protein intake on renal function and structure in partially nephrectomized rats, Kidney Int. 27: 739.PubMedGoogle Scholar
  6. 6.
    Seney, F. D. and Wright, F. S., 1985, Dietary protein suppresses feedback control on glomerular filtration in rats, J. Clin. Invest. 75: 558.PubMedGoogle Scholar
  7. 7.
    Brezis, M., Silva, P., and Epstein, F. H., 1984, Amino acids reduce renal vasodilatation in isolated perfused kidney: Coupling to oxidative metabolism, Am. J. Physiol. 247: H999.PubMedGoogle Scholar
  8. 8.
    Anderson, S., Meyer, T. W., Rennke, H. G., and Brenner, B. M., 1985, Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass, J. Clin. Invest. 76: 612.PubMedGoogle Scholar
  9. 9.
    Zatz, R., Meyer, T. W., Rennke, H. G., and Brenner, B. M., 1985, Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy, Proc. Natl. Acad. Sci. USA 82: 5963.PubMedGoogle Scholar
  10. 10.
    Mogensen, C. E. and Christensen, C. K., 1984, Predicting diabetic nephropathy in insulin-dependent patients, N. Engl. J. Med. 311: 89.PubMedGoogle Scholar
  11. 11.
    Mogensen, C. E., 1984, Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes, N. Engl. J. Med. 310: 356.PubMedGoogle Scholar
  12. 12.
    Laouari, D. and Kleinknecht, C., 1985, The role of nutritional factors in the course of experimental renal failure, Clin. Nephrol. 5: 147.Google Scholar
  13. 13.
    Barcelli, U. and Pollak, V. E., 1985, Is there a role for polyunsaturated fatty acids in the prevention of renal disease and renal failure? Nephron 41: 209.PubMedGoogle Scholar
  14. 14.
    Barcelli, U. O. and Pollak, V. E., 1986, Prostaglandins and progressive renal insufficiency, in: Contemporary Issues in Nephrology, The Progressive Nature of Renal Disease ( W. E. Mitch, ed.), Churchill Livingstone, New York, p. 65.Google Scholar
  15. 15.
    Kher, V., Barcelli, U., Weiss, M., and Pollak, V. E., 1985, Effects of dietary linoleic acid enrichment on induction of immune complex nephritis in mice, Nephron 39: 261.PubMedGoogle Scholar
  16. 16.
    Hirschberg, R., von Herrath, D., Klaus, H., Hofer, W., Schuster, C., Rottka, H., and Schaefer, K., 1984, Effect of diets containing varying concentrations of essential fatty acids and triglycerides on renal function in uremic rats and NZB/NZW F. mice, Nephron 38: 233.PubMedGoogle Scholar
  17. 17.
    Bosch, J. P., Lauer, A., and Glabman, S., 1984, Short-term protein loading in assessment of patients with renal disease, Am. J. Med. 77: 873.PubMedGoogle Scholar
  18. 18.
    Rodriguez-Iturbe, B., Herrera, J., and Garcia, R., 1985, Response to acute protein load in kidney donors and in apparently normal postacute glomerulonephritis patients: Evidence for glomerular hyperfiltration, Lancet 2: 461.PubMedGoogle Scholar
  19. 19.
    Bergstrom, J., Ahlberg, M., and Alvestrand, A., 1985, Influence of protein intake on renal hemodynamics and plasma hormone concentrations in normal subjects, Acta Med. Scand. 217: 189.PubMedGoogle Scholar
  20. 20.
    Hirschberg, R., Rottka, H., von Herrath, D., Pauls, A., and Schaefer, K., 1985, Effect of an acute protein load on the creatinine clearance in healthy vegetarians, Klin. Wochenschr. 63: 217.PubMedGoogle Scholar
  21. 21.
    terWee, P. M., Geerlings, W., Rosman, J. B., Sluiter, W. J., vander Geest, S., and Donker, A. J. M., 1985, Testing renal reserve filtration capacity with an amino acid solution, Nephron 41: 193.Google Scholar
  22. 22.
    Barsotti, G., Giannoni, A., Morelli, E., Lazzeri, M., Vlamis, I., Baldi, R., and Giovannetti, S., 1984, The decline in renal function slowed by very low phosphorus intake in chronic renal patients following a low nitrogen diet, Clin. Nephrol. 21: 54.PubMedGoogle Scholar
  23. 23.
    Alvestrand, A. and Bergstrom, J., 1986, Amino-acid supplements and the course of chronic renal disease, in: Contemporary Issues in Nephrology, The Progressive Nature of Renal Disease ( W. E. Mitch, ed.), Churchill Livingstone, New York, p. 219.Google Scholar
  24. 24.
    Rosman, J. B., terWee, P. M., Meijer, S., Piers-Becht, T. P. M., Sluiter, W. J., and Donker, A.J. M., 1984, Prospective randomized trial of early dietary protein restriction in chronic renal failure, Lancet 2: 1291.PubMedGoogle Scholar
  25. 25.
    Mitch, W. E., 1986, Measuring the rate of progression of renal insufficiency, in: Contemporary Issues in Nephrology, The Progressive Nature of Renal Disease ( W. E. Mitch, ed.), Churchill Livingstone, New York, p. 167.Google Scholar
  26. 26.
    Oldrizzi, L., Rugue, G., Valvo, E., Lupo, A., Loschiavo, C., Gamararo, L., Tessitore, N., Fabis, A., Panzetta, G., and Maschio, G., 1985, Progression of renal failure in patients with renal disease of diverse etiology on proteinrestricted diet, Kidney Int. 27: 553.PubMedGoogle Scholar
  27. 27.
    El-Nahas, A. M., Masters-Thomas, A., Brady, S. A., Farrington, K., Wilkinson, V., Hilson, A. J. W., Varghese, Z., and Moorhead, J. F., 1984, Selective effect of low protein diets in chronic renal diseases, Br. Med. J. 289: 1337.Google Scholar
  28. 28.
    Mitch, W. E., Walser, M., Steinman, T. I., Hill, S., Zeger, S., and Tungsanga, K., 1984, The effect of a keto acid-amino acid supplement to a restricted diet on the progression of chronic renal failure, N. Engl. J. Med. 311: 623.PubMedGoogle Scholar
  29. 29.
    Mitch, W. E., 1981, Nutrition in renal disease, in: Contemporary Nephrology ( S. Klahr and S. G. Massry, eds.) Plenum Press, New York.Google Scholar
  30. 30.
    Mitch, W. E., 1983, Nutrition in renal disease, in: Contemporary Nephrology, Volume 2, (S. Klahr and S. G. Massry, eds.), Plenum Press, New York.Google Scholar
  31. 31.
    Maroni, B. J. and Mitch, W. E., 1985, Nutrition in renal disease, in: Contemporary Nephrology, Volume 3 (S. Klahr and S. G. Massry, eds.), Plenum Press, New York.Google Scholar
  32. 32.
    Schmitz, O., Alberti, K. G. M. M, Christensen, N.J, Hading, C, Hjoellund, E, Beck-Nielsen, H, and Oerskov, H, 1985, Aspects of glucose homeostasis in uremia as assessed by the hyperinsulinemic euglycemic clamp technique, Metabolism 34: 465.PubMedGoogle Scholar
  33. 33.
    Milutinovic, S, Breyer, D, Molnar, V, Stefovic, A, Jankovic, N., Skrabalo, Z, and Rocic, B, 1985, Change in insulin binding during hemodialysis in uremic patients, Nephron 41: 307.PubMedGoogle Scholar
  34. 34.
    Pederson, O., Schmitz, O, Hjoellund, E, Richelson, B, and Hansen, H. E, 1985, Postbinding defects of insulin action in human adipocytes from uremic patients, Kidney Int. 27: 780.Google Scholar
  35. 35.
    DeFronzo, R. A. and Smith, J. D, 1985, Is glucose tolerance harmful for the uremic patient? Kidney Int. 28(Suppl. 17):S-88.Google Scholar
  36. 36.
    Helinek, T. G, Sadel, S, and Caro, J. F, 1984, The effects of chronic uremia on glucagon binding and action in isolated rat hepatocytes, Metabolism 33: 158.PubMedGoogle Scholar
  37. 37.
    Kalhan, S. C, Ricanati, E. S, Tserng, K-Y, and Savin, S. M, 1983, Glucose turnover in chronic uremia: Increased recycling with diminished oxydation of glucose, Metabolism 32: 1155.PubMedGoogle Scholar
  38. 38.
    McCaleb, M. L., Mevorach, R, Freeman, R. B, Izzo, M. S, and Lockwood, D. H, 1984, Induction of insulin resistance in normal adipose tissue by uremic human serum, Kidney Int. 25: 416.PubMedGoogle Scholar
  39. 39.
    McCaleb, M. L, Izzo, M. S, and Lockwood, D. H, 1985, Characterization and patial purification of a factor from human uremic serum that induces insulin resistance, J. Clin. Invest. 75: 391.PubMedGoogle Scholar
  40. 40.
    Akmal, M, Massry, S. G, Goldstein, D. A, Fanti, P, Weisz, A, and DeFronzo, R. A, 1985, Role of parathyroid hormone in glucose intolerance of chronic renal failure, J. Clin. Invest. 75: 1037.PubMedGoogle Scholar
  41. 41.
    Druml, W, Kleinberger, G, and Buerger, U, 1983, Renal failure: Metabolism and supply of amino acids, in: New Aspects of Clinical Nutrition ( G. Kleinberger and E. Deutsch, eds.), Karger, Basel, p. 412.Google Scholar
  42. 42.
    Alvestrand, A, 1985, Amino acid metabolism in patients with chronic renal failure, Clin. Nutr. 4 (Suppl. 1): 14.Google Scholar
  43. 43.
    Tizianello, A, DeFerrari, G, Garibotto, G., Robaudo, C, Canepa, A., and Passerone, G, 1985, Is amino acid imbalance harmful to patients in chronic renal failure, Kidney Int. 28(Suppl. l7):S-70.Google Scholar
  44. 44.
    Zern, M. A., Yap, S. H., Strair, R. K, Kaysen, G. A., and Shafritz, D. A, 1984, Effect of chronic renal failure on protein sythesis and albumin messenger ribonucleic acid in rat liver, J. Clin. Invest. 73: 1167.PubMedGoogle Scholar
  45. 45.
    Chan, M. K, Persaud, J, Varghese, Z, and Moorehead, J. F, 1985, Pathogenic roles of post-heparin lipases in lipid abnormalities in hemodialysis patients, Kidney Int. 25: 812Google Scholar
  46. 46.
    Druml, W, Zechner, R., Magometschnigg, D, Lenz, K, Kleinberger, G, Laggner, A, and Kostner, G, 1985, Post-heparin lipolytic activity in acute renal failure, Clin. Nephrol. 23: 289.PubMedGoogle Scholar
  47. 47.
    McLeod, R, Reeve, C. E, and Frohlich, J, 1984, Plasma lipoproteins and lecithin:Cholesterol acyltransferase distribution in patients on dialysis, Kidney Int. 25: 683.PubMedGoogle Scholar
  48. 48.
    Crawford, G. A., Savadie, E., Stewart, J. H., and Mahony, J. F., 1979, Inhibitors of normal plasma lipases by serum from chronic renal failure patients, Trans. Am. Soc. Artif. Ind. Organ 25: 426.Google Scholar
  49. 49.
    Henning, H. V. and Balusek, E., 1981, Lipid metabolism in uremia: Effect of regular hemofiltration treatment, J. Dialysis 1: 595.Google Scholar
  50. 50.
    Zimmermann, E. and Hohenegger, M., 1979, Lipid metabolism in uremic and non-uremic acidosis, Nephron 24: 217.PubMedGoogle Scholar
  51. 51.
    Huttuner, J., Pasternak, A., Vanttiner, T., Elmholm, C., and Nikkila, E., 1928, Lipoprotein metabolism in patients with chronic uremia. Effects of hemodialysis on serum lipoprotein and postheparin plasma triglyceride lipases, Acta Med. Scand. 203: 211.Google Scholar
  52. 52.
    Holdsworth, G., Stocks, J., Doson, P., and Galton, D. J., 1982, An abnormal triglyceride-rich lipoprotein containing excess sialylated apolipoprotein CIII, J. Clin. Invest. 69: 932.PubMedGoogle Scholar
  53. 53.
    Roullet, J-B., Lacour, B., Yvert, J-P., Prat, J-J., and Drueke, T., 1985, Factors of increase in serum triglyceride-rich lipoproteins in uremic rats, Kidney Int. 27: 420.PubMedGoogle Scholar
  54. 54.
    Hsia, S. L., Perez, G. O., Mendez, A. J., Schiffman, J., Fletcher, S., and Stoudemire, J. B., 1985, Defect of cholesterol transport in patients receiving maintenance hemodialysis, J. Lab. Clin. Med. 106: 53.PubMedGoogle Scholar
  55. 55.
    Gonen, B., Goldberg, A. P., Harter, H. R., and Schonfeld, G., 1985, Abnormal cell-interactive properties of low-density lipoproteins isolated from patients with chronic renal failure, Metabolism 34: 10.PubMedGoogle Scholar
  56. 56.
    Ritz, E., Augustin, J., Bommer, J., Gnasso, A., and Haberbosch, W., 1985, Should hyperlipidemia of renal failure be treated? Kidney Int. 28(Suppl. 17):S-84.Google Scholar
  57. 57.
    Kobayashi, N., Okubo, M., Marumo, S., and Nakamura, H., 1983, Effect of dialysis on lipid metabolism in chronic renal failure—Acetate versus bicarbonate, Int. J. Artif. Org. 6: 187.Google Scholar
  58. 58.
    Golper, T. A., 1984, Therapy for uremic hyperlipidemia, Nephron 38: 217.PubMedGoogle Scholar
  59. 59.
    Goldberg, A. P., Geltman, E. M., Hagberg, J. M., Garvin, J. R., Delmez, J. A., Carney, R. M., Naumovicz, A., Oldfield, M. H., and Harter, H. R., 1983, Therapeutic benefit of excercise training for hemodialysis patients, Kidney Int. 24(Suppl. 16):S-303.Google Scholar
  60. 60.
    Shalom, R., Blumenthal, J. A., Williams, S., McMurray, R. G., and Dennis, V. W., 1984, Feasibility and benefits of exercise training in patients on maintenance dialysis, Kidney Int. 25: 958.PubMedGoogle Scholar
  61. 61.
    Attman, P. O., Gustafson, A., Alaupovic, P., and Wang, C-S., 1984, Effect of protein-reduced diet on plasma lipids, apolipoproteins and lipolytic activities in patients with chronic renal failure, Am. J. Nephrol. 4: 92.PubMedGoogle Scholar
  62. 62.
    Hamazaki, T., Nakazawa, R., Tateno, S., Shishido, H., Isode, K., Hattori, Y., Yoshida, T., Fujita, T., Yano, S., and Kamagai, A., 1984, Effects of oil rich in eicasopentaenoic acid on serum in hyperlipidemic hemodialysis patients, Kidney Int. 26: 81.PubMedGoogle Scholar
  63. 63.
    Leschke, M., Rumpf, K. W., Eisenhauer, T., Fuchs, C., Becker, K., Kloethe, U., and Scheler, F., 1983, Quantitative assessement of carnitine loss during hemodialysis and hemofiltration, Kidney Int. 24(Suppl. 16):S-143.Google Scholar
  64. 64.
    Roessle, C, Kohse, K. P, Gloeggler, A, Pflieger, M, Franz, H-E, Bulla, M, and Furst, P, 1985, Alterations in carnitine metabolism in adults and children undergoing intermittent chronic hemodialysis, Clin. Nutr. 4 (Suppl. 1): 51A.Google Scholar
  65. 65.
    Weschler, A, Aviram, M, Levin, M, Better, O. S., and Brook, J. G., 1984, High dose of L-carnitine increases platelet aggregation and plasma triglyceride levels in uremic patients on hemodialysis, Nephron 38: 120.PubMedGoogle Scholar
  66. 66.
    Basile, C, Lacour, B, DiGuilio, S, and Drueke, T, 1985, Effect of oral carnitine supplementation on disturbances of lipid metabolism in the uremic rat, Nephron 39: 50.PubMedGoogle Scholar
  67. 67.
    Byron, P. R., Mallick, N. P, and Taylor, G, 1976, Immune potential in human uremia: Relationship of glomerular filtration rate to depression of uremic potential, J. Clin. Pathol. 29: 765.PubMedGoogle Scholar
  68. 68.
    Berkelhammer, C. H, Leiter, L. A, Jeejeebhoy, K. N, Detsky, A. S, Oreopoulos, D. P, Uldall, P. R, and Baker, J. P., 1985, Skeletal muscle function in chronic renal failure: An index of nutritional status, Am. J. Clin. Nutr. 42: 845.PubMedGoogle Scholar
  69. 69.
    Schoenfeld, P. Y., Henry, R. R., Laird, N. M, and Roxe, D. M., 1983, Assessement of nutritional status of the national cooperative dialysis study population, Kidney Int. 23(Suppl. 13):S-80.Google Scholar
  70. 70.
    Thunberg, B.J, Ed, M, Swamy, A. P, and Cestero, R. V. M, 1981, Cross sectional and longitudinal nutritional measurements in maintenance hemodialysis patients, Am. J. Clin. Nutr. 34: 2005.Google Scholar
  71. 71.
    Wolfson, M, Strong, C. J, Minturn, D, Gray, D. K, and Kopple, J. D, 1984, Nutritional status and lymphocyte function in maintenance hemodialysis patients, Am. J. Clin. Nutr. 37: 547.Google Scholar
  72. 72.
    Panzetta, G, Guerra, U, D’Angelo, A, Sandrini, S, Terzi, A, Oldrizzi, L., and Maiorca, R., 1985, Body composition and nutritional status in patients on continuous ambulatory peritoneal dialysis (CAPD), Clin Nephrol. 23: 18.PubMedGoogle Scholar
  73. 73.
    Sargent, J. A, 1983, Control of dialysis by a single-pool urea model: The national cooperative dialysis study, Kidney Int. 23(Suppl.13):S-19.Google Scholar
  74. 74.
    Davidson, W. B. and Davidson, S. M, 1984, Teaching dialysis kinetics with a minicomputer, Am. J. Nephrol. 4: 19.PubMedGoogle Scholar
  75. 75.
    Astrug, A, Kuleva, V., Kuleff, T., Kirrakov, Z, Tomov, A, and Djingova, R, 1984, Trace elements in blood and plasma of patients with chronic renal failure treated with maintenance hemodialysis, Trace Elements Med. 1: 65.Google Scholar
  76. 76.
    Marumo, F, Tsukamoto, Y, Iwanami, S, Kishimoto, T, and Yamagami, S., 1984, Trace element concentration in hair, fingernails and plasma of patients with chronic renal failure on hemodialysis and hemofiltration, Nephron 38: 267.PubMedGoogle Scholar
  77. 77.
    Aggett, P. J, 1984, Zinc metabolism in chronic renal insufficiency with and without dialysis therapy, Contrib. Nephrol. 38: 95.PubMedGoogle Scholar
  78. 78.
    Filteau, S. M. and Woodward, B, 1982, The effect of serum protein deficiency on serum zinc concentration of mice fed a requirement level or a high level of dietary zinc, J. Nutr. 112: 1974.PubMedGoogle Scholar
  79. 79.
    Grekas, D., Nicolaides, P., Tsakalos, N., and Tourkantonis, A., 1985, Pharmacokinetics of zinc in chronic renal failure patients, Trace Elements Med. 2: 139.Google Scholar
  80. 80.
    Sprenger, K. G. B., Schmitz, J., Hetzel, B., Bundschu, D., and Franz, H. E., 1984, Zinc and sexual dysfunction, Contr. Nephrol. 38: 119.Google Scholar
  81. 81.
    Eschbach, J. W., 1984, Iron kinetics in healthy individuals and in chronic renal insufficiency, Contr. Nephrol. 38: 129.Google Scholar
  82. 82.
    Van de Vyver, F. L., Vanheute, A. A., Majelyne, W. M., O’Haese, P., Blockx, P. P., Bekaert, A. B., Buysses, N., DeKeersmaecker, W., and DeBroe, M. E., 1984, Serum ferritin as a guide for iron stores in chronic hemodialysis patients, Kidney Int. 26: 451.Google Scholar
  83. 83.
    Hilfenhaus, M., Koch, K-M., Brechstein, P. B., Schmidt, H., Fassbinder, W., and Baldamus, C. A., 1984, Therapy and monitoring of hypersiderosis in chronic renal insufficiency, Contr. Nephrol. 38: 167.Google Scholar
  84. 84.
    Blumberg, A., Marti, H. R., and Graber, C. H., 1984, Parameters for the assessment of iron metabolism in chronic renal insufficiency. Contr. Nephrol. 38: 135.Google Scholar
  85. 85.
    Hopfer, S. M., Linden, J. V., Crisostomo, M. C., Catalanatto, F. A., Galen, M., and Sunderman, F. W., 1985, Hypernickelemia in hemodialysis patients, Trace Elements Med. 2: 68.Google Scholar
  86. 86.
    Clyne, N., Lins, L-E., and Pehrsson, S. K., 1985, Serum cobalt in relation to cardiac performance in patients with chronic renal failure, Trace Elements Med. 2: 44.Google Scholar
  87. 87.
    Kesteloo, H., Reclandt, J., Willems, J., Claes, S. H., and Joossens, J. V., 1968, An inquiry into the role of cobalt in the heart disease of chronic beer drinkers, Circulation 37: 854.Google Scholar
  88. 88.
    Kallistratos, G., Evangelou, A., Seferiadis, K., Vezyraki, P., and Barboutis, K., 1985, Selenium and hemodialysis: Serum selenium levels in healthy persons, non-cancer and cancer patients with chronic renal failure, Nephron 41: 217.PubMedGoogle Scholar
  89. 89.
    Vaziri, N. B., Said, H. M., Hollander, D., Barbari, A., Patel, N., Dang, D., and Karinger, R., 1985, Impaired intestinal absorption of riboflavin in experimental uremia, Nephron 41: 26.PubMedGoogle Scholar
  90. 90.
    DeBari, V. A., Baker, H., and Needle, M. A., 1984, Water soluble vitamins in granulocytes, erythrocytes and plasma obtained from chronic hemodialysis patients, Am. J. Clin. Nutr. 39: 410.PubMedGoogle Scholar
  91. 91.
    Schaumburg, H., Kaplan, J., Windebank, A., Vick, N., Rasumus, S., Pleasure, D., and Brown, M. J., 1983, Sensory neuropathy from pyridoxine abuse, N. Engl. J. Med. 309: 445.PubMedGoogle Scholar
  92. 92.
    Pru, C., Eaton, J., and Kjellstrand, C., 1985, Vitamin C intoxication and hyperoxalemia in chronic hemodialysis patients, Nephron 30: 112.Google Scholar
  93. 93.
    Vahlquist, A., Berne, B., Danielson, B. G., Grefberg, N., and Berne, C., 1985, Vitamin A losses during continuous ambulatory peritoneal dialysis, Nephron 41: 139.Google Scholar
  94. 94.
    Ono, K., Waki, Y., and Takeda, K., 1984, Hypervitaminosis A:A contributing factor to anemia in regular dialysis patients, Nephron 38: 44.PubMedGoogle Scholar
  95. 95.
    Salyer, W. S. and Kern, D., 1973, Oxalosis as a complicadon of chronic renal failure, Kidney Int. 4: 61.PubMedGoogle Scholar
  96. 96.
    Balcke, P, Schmidt, P., Zazgornik, J, Kopsa, H, and Deutsch, E, 1980, Secondary oxalosis in chronic renal insufficiency, N. Engl. J. Med. 303: 944.PubMedGoogle Scholar
  97. 97.
    Boer, P, van Leersum, L, Hene, R. J, and Dorhout Meers, E. J, 1984, Plasma oxalate concentration in chronic renal disease, Am. J. Kidney Dis. 6:118.Google Scholar
  98. 98.
    Balcke, P, Schmidt, P, Zazgornik, J, Kopsa, H, and Haubenstock, A, 1984, Ascorbic acid aggravates secondary hyperoxalemia in patients on chronic hemodialysis, Ann. Intern. Med. 101: 344.PubMedGoogle Scholar
  99. 99.
    Ramsay, A. G. and Reed, R. G, 1984, Oxalate removal by hemodialysis in endstage renal disease, Am. J. Kidney Dis. 6: 123.Google Scholar
  100. 100.
    Baer, A. and Ritzel, G. (eds), 1985, Xylitol and oxalate, Int. J. Vit. Nutr. Res. (Suppl. 28 ).Google Scholar
  101. 101.
    Schultze, G, Pommer, W, Offermann, G, Molzahn, M, Butz, M, Krauss, H. P, Lobeck, H, and Tschoepe, W, 1983, Acute renal failure and secondary renal oxalosis, Infusions Ther. 10: 322.Google Scholar
  102. 102.
    Balcke, P, Schmidt, P, Zazgornik, J, and Kopsa, H, 1981, Effect of vitamin B6 administration on elevated plasma oxalate level in hemodialysis patients, Eur. J. Clin. Invest. 12: 481.Google Scholar
  103. 103.
    O’Callaghan, J. W., Arbuckle, S. M., and Craswel, P. W, 1984, Rapid progression of oxalosis induced cardiomyopathy despite adaequate hemodialysis, Min. Electr. Metab., 10: 48.Google Scholar
  104. 104.
    Fayemi, A. O, Ali, M, and Braun, E. V, 1979, Oxalosis in hemodialysis patients, Arch. Pathol. Lab. Med. 103: 58.PubMedGoogle Scholar
  105. 105.
    Barsotti, G, Cristofano, C, Morelli, E, Meola, M, Lupetti, S, and Giovanetti, S, 1984, Serum oxalic acid in uremia: Effect of a low-protein diet supplemented with essential amino acids and keto analogues, Nephron 38: 54.PubMedGoogle Scholar
  106. 106.
    Ahmad, S. and Hatch, M, 1985, Hyperoxalemia in renal failure and the role of hemoperfusion and hemodialysis in primary oxalosis, Nephron 41: 235.PubMedGoogle Scholar
  107. 107.
    Thompson, C. S. and Weinman, E. J, 1984, The significance of oxalate in renal failure, Am. J. Kidney Dis. 4: 97.PubMedGoogle Scholar
  108. 108.
    Broyer, M., Guillot, M, Niaudet, P, Kleinknecht, C, Dartois, A. M, and Jean, G, 1983, Comparison of three low-nitrogen diets containing essential amino acids and their alpha analogues for severely uremic children, Kidney Int. 24(Suppl. l7):S-290.Google Scholar
  109. 109.
    Rizzoni, G, Basso, T, and Setari, M, 1984, Growth in children with chronic renal failure on conservative treatment, Kidney Int. 26: 52.PubMedGoogle Scholar
  110. 110.
    Sigstroem, L, Attman, P-O, Jodal, U, and Odenman, I, 1984, Growth during treatment with low-protein diet in children with renal failure, Clin. Nephrol. 21: 152.Google Scholar
  111. 111.
    Kobayashi, N, Okubo, M, Marumo, F, Uchida, H, Endo, T, and Nakamura, H, 1983, De novo development of hypercholesterinemia and elevated high density lipoprotein cholesterol: Apoprotein A-1 ratio in patients with chronic renal failure following kidney transplantation, Nephron 35:231. ron 35: 231.Google Scholar
  112. 112.
    Goldstein, S., Duhamel, G., Laudat, M. H., Berthelier, M., Herry, C., Tete, M. J., and Broyer, M., 1984, Plasma lipids, lipoproteins and apolipoproteins A I, A II and B in renal, transplanted children: What risk for accelerated atherosclerosis, Nephron 38: 87.PubMedGoogle Scholar
  113. 113.
    Shen, S. Y., Lukens, C. W., Alongi, S. V., Sfeir, R. E., Dagher, F. J., and Sadler, J. H., 1983, Patient profile and effect of dietary therapy on posttransplant hyperlipidemia, Kidney Int. 24(Suppl. 16):S-147.Google Scholar
  114. 114.
    Cogan, M. G., Sargent, J. A., Yarbrough, S. G., Vincenti, F., and Ahmen, W. J., 1981, Prevention of prednisone-induced negative nitrogen balance, Ann. Intern. Med. 95: 158.PubMedGoogle Scholar
  115. 115.
    Steinmuller, D. R., Richards, C., Novick, A., Braun, W., and Nakamoto, S., 1983, Protein catabolic rate post transplant, Dialysis Transplant. 12: 504.Google Scholar
  116. 116.
    Hoy, W. E., Sargent, J. A., Freeman, R. B., Pabico, R. C., McKenna, B. A., and Sterling, W. A., 1984, A computer-aided prospective study of protein catabolic rate and nitrogen balance after renal transplant, Kidney Int. 25.-343A.Google Scholar
  117. 117.
    Whittier, F. C., Evans, D. H., Dutton, S., Ross, G., Luger, A., Nolph, K., Bauer, J. H., Brooks, C. S., and Moore, H., 1985, Nutrition in renal transplanatation, Am. J. Kidney Dis. 6: 405.PubMedGoogle Scholar
  118. 118.
    Coggins, C. H., 1982, Management of nephrotic syndrome, in: Contemporary Issues in Nephrology, Nephrotic Syndrome, Volume 9 ( B. M. Brenner and J. H. Stein, eds.), Churchill Livingstone, New York, p. 282.Google Scholar
  119. 119.
    Manos, J., Harrison, A., Jones, M., Adams, P. H., and Mallick, N. P., 1983, Protein/calorie balance in nephrotic syndrome, Kidney Int. 24 (Suppl. 16): 349.Google Scholar
  120. 120.
    Muls, E., Rosseneu, M., Daneels, R., Schurges, M., and Boelaert, J., 1985, Lipoprotein distribution and composition in the human nephrotic syndrome, Atherosclerosis 54: 225.PubMedGoogle Scholar
  121. 121.
    Appel, G. B., Blum, C. B., Chien, S., Kunis, C. L., and Appel, A. S., 1985, The hyperlipidemia of nephrotic syndrome, N. Engl. J. Med. 312: 1544.PubMedGoogle Scholar
  122. 122.
    Sasaki, J., Hara, F., Motooka, T., Naito, S., and Arakawa, K., 1985, Nephrotic syndrome associated with hyper-high-density lipoproteinemia poteintiated by prednisolone therapy, Nephron 41: 110.PubMedGoogle Scholar
  123. 123.
    Sokolovskaya, I. V. and Nikiforava, N. V., 1984, High density lipoprotein cholesterol in patients with untreated and treated nephrotic syndrome, Nephron 37: 49.PubMedGoogle Scholar
  124. 124.
    Yedgar, S., Eilman, O., and Shafrir, E., 1985, Regulation of plasma lipid levels by plasma viscosity in nephrotic rats, Am. J. Physiol. 248: E10.PubMedGoogle Scholar
  125. 125.
    Chan, M. K., Persaud, J., Varghese, Z., and Moorehead, J. F., 1984, Postheparin hepatic and lipoprotein lipase activities in nephrotic syndrome, Aust. NZ J. Med. 14: 841.Google Scholar
  126. 126.
    Bridgeman, J. F., Rosen, S. M., and Thorp, J. M., 1972, Complications during clofibrate treatment of nephrotic syndrome hyperlipoproteinemia, Lancet 2: 506.Google Scholar
  127. 127.
    Wass, V. J., Jarrett, R. J., Chilvers, C., and Cameron, J. S., 1979, Does the nephrotic syndrome increase the risk of cardiovascular disease? Lancet 2: 664.PubMedGoogle Scholar
  128. 128.
    Shear, L, 1967, Internal redistribution of tissue protein synthesis in uremia, J. Clin. Invest. 48: 1252.Google Scholar
  129. 129.
    Clark, A. S. and Mitch, W. E, 1983, Muscle protein turnover and glucose uptake in acutely uremic rats, J. Clin. Invest. 72: 836.PubMedGoogle Scholar
  130. 130.
    Horl, W. H., Stepinski, J., Schaefer, R. M., Warner, C, and Heidland, A., 1983, Role of proteases in hypercatabolic patients with renal failure, Kidney Int. 29(Suppl. 16):S-37.Google Scholar
  131. 131.
    Feinstein, E. I., 1985, Parenteral nutrition in acute renal failure, Am. J. Nephrol. 5: 145.PubMedGoogle Scholar
  132. 132.
    Pils, P, Jettmar, W, Adamiker, D, and Tragi, K-H, 1981, Insulin and in vitro protein synthesis of liver and skeletal muscle ribosomes in experimental acute uremia, Horm. Metab. Res. 13: 89.PubMedGoogle Scholar
  133. 133.
    Frohlich, J, Schoelmerich, J, Hoppe-Seyler, G, Maier, K. P, Talke, Schollmeyer, P, and Gerok, W. E, 1977, The effect of acute uremia on gluconeogenesis in isolated perfused rat liver, Eur. J. Clin. Invest. 7: 261.PubMedGoogle Scholar
  134. 134.
    Druml, W, Buerger, U, Kleinberger, G, Lenz, K, and Laggner, A., 1986, Amino acid elimination in acute renal failure, Nephron 42: 62.PubMedGoogle Scholar
  135. 135.
    May, R. C., Clark, A. S., Goher, M. A, and Mitch, W. E, 1985, Specific defects in insulin-mediated muscle metabolism in acute uremia, Kidney Int. 28: 490.PubMedGoogle Scholar
  136. 136.
    Clark, A. S., Kelly, R. A, and Mitch, W. E, 1985, Systemic response to thermal injury in rats, J. Clin. Invest. 74: 888.Google Scholar
  137. 137.
    Druml, W, Laggner, A, Widhalm, K, Kleinberger, G., and Lenz, K, 1983, Lipid metabolism in acute renal failure, Kidney Int. 24(Suppl. 16):S-139.Google Scholar
  138. 138.
    Hohenegger, M. and Schuh, H, 1984, Triacylglycerol secretion and fatty acid synthesis by the liver in acute uremic rats, Exp. Pathol. 25: 89.PubMedGoogle Scholar
  139. 139.
    Gottlob, R, Srour, A. N, Echsel, H, Molinari, E, Sogukoglu, T, Saghir, F., and Hohenegger, M., 1985, Increased serum triacylglycerol and cholesterol binding reserve in acute uremic rats, Exp. Pathol. 27: 249.PubMedGoogle Scholar
  140. 140.
    Toback, F. G., Dodd, R. C., Mayer, E. R., and Havener, J. L. J, 1983, Amino acid administration enhances renal protein metabolism after acute tubular necrosis, Nephron 33: 238.PubMedGoogle Scholar
  141. 141.
    Zager, R. A, Johannes, G., Tuttle, S. E., and Sharma, H. M., 1983, Acute amino acid nephrotoxicity, J. Lab. Clin. Med. 101: 130.PubMedGoogle Scholar
  142. 142.
    Zager, R. A. and Venkatachalam, M. A, 1983, Potentiation of ischemic renal injury by amino acid infusion, Kidney Int. 24: 620.PubMedGoogle Scholar
  143. 143.
    Morgenson, C. E. and Soiling, K, 1977, Studies on renal tubular protein reabsorption: Partial and near complete inhibition by certain amino acids, Scand. J. Clin. Lab. Invest. 37: 477.Google Scholar
  144. 144.
    Messner, G, Oberleithner, H, and Lang, F, 1985, The effect of phenylalanine on the electrical properties of proximal tubule cells in the frog kidney, Pflüg. Arch. 404: 138.Google Scholar
  145. 145.
    Visek, W. J, 1984, An update of concepts of essential amino acids, Annu. Rev. Nutr. 4: 137.PubMedGoogle Scholar
  146. 146.
    Grazer, R. E, Sutton, J. M, Friedstrom, S, and McBarron, F. D, 1984, Hyperammoniemic encephalopathy due to essential amino acid hyperalimentation, Arch Intern. Med. 144: 2278.PubMedGoogle Scholar
  147. 147.
    Barbul, A., Wasserkrug, H. L., Penberthy, L. T., Yoshimura, N. N., Tao, R. C., and Efron, G., 1984, Optimal levels of arginine in maintenance intravenous hyperalimentation, J. Parent. Nutr. 8: 281.Google Scholar
  148. 148.
    Yu, Y. M., Yang, R. B., Matthews, D. E., Wen, Z. M., Burke, J. F., Bier, D. M., and Young, V. R., 1985, Quantitative aspects of glycine and alanine nitrogen metabolism in postabsorptive young men. Effects of level of nitrogen and dispensible amino acid intake, Nutrition 115: 399.Google Scholar
  149. 149.
    Pennisi, A. J., Wang, M., and Kopple, J. D., 1978, Effects of protein and amino acid diets in chronically uremic and control rats, Kidney Int. 13: 472.PubMedGoogle Scholar
  150. 150.
    Swendseid, M. E., Harris, C. L., and Tuttle, S. G., 1960, The effects of sources of nonessential nitrogen on nitrogen balance in young adults, J. Nutr. 71: 105.Google Scholar
  151. 151.
    Feinstein, E. I., Blumenkrantz, M. J., Healy, M., Koffler, A., Silberman, H., Massry, S. G., and Kopple, J. D., 1981, Clinical and metabolic response to parenteral nutrition in acute renal failure: Controlled double blind study, Medicine 60: 124.PubMedGoogle Scholar
  152. 152.
    Mirtallo, J. M., Schneider, P. J., and Mavko, E., 1982, A comparison of essential and general amino acid infusions in nutritional support of patients with compromised renal function, J. Parent. Nutr. 6: 109.Google Scholar
  153. 153.
    Feinstein, E. I., Kopple, J. D., Silberman, H., and Massry, S. G., 1983, Total parenteral nutrition with high or low nitrogen intake in patients with acute renal failure, Kidney Int. 24(Suppl. 16):S-319.Google Scholar
  154. 154.
    Rose, W. C., 1979, Amino acid requirements of man, Fed. Proc. 8: 546.Google Scholar
  155. 155.
    Young, V. R. and Scrimshaw, N. S., 1978, Nutritional evaluation of proteins and protein requirements, in: Protein Resources and Technology ( M. Milner, N. S. Scrimshaw, and D. I. C. Wang, eds.), AVI, Westport, Connecticut, p. 136.Google Scholar
  156. 156.
    Mault, J. C., Bartlett, R. M., Dechert, R. E., Clark, S. F., and Swartz, R. O., 1983, Starvation: A major contribution to mortality in acute renal failure, Trans. Am. Soc. Artif. Int. Organs 29: 390.Google Scholar
  157. 157.
    Spreiter, S. C., Myers, B. D., and Swenson, R. J., 1980, Protein energy requirements in subjects with acute renal failure receiving intermittent hemodialysis, Am. J. Clin. Nutr. 33: 1432.Google Scholar
  158. 158.
    Druml, W., Widhalm, U., Laggner, A., Kleinberger, G., and Lenz, K., 1982, Fat elimination in acute renal failure, Clin. Nutr. 1: 109.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Wilfred Druml
    • 1
  • William E. Mitch
    • 1
  1. 1.Renal DivisionEmory University School of MedicineAtlantaUSA

Personalised recommendations