Skip to main content

Electron Correlation Energies in Hydrogenated Amorphous Silicon

  • Chapter
Disordered Semiconductors

Part of the book series: Institute for Amorphous Studies Series ((IASS))

Abstract

A general problem for the understanding of the properties of localized defect states in the gap of semiconductors is the question of electron correlation. Usually, the influence of correlation effects on the energy-levels of a localized gap state is expressed in terms of the effective correlation energy, Ueff, which describes the difference in total electronic energy due to occupation of the same defect state by one or two electrons:

$$U_{eff} = E\left( {D^2 } \right) - 2E\left( {D^1 } \right),$$
((1a))

where D denotes a localized defect and the upper index represents the electron occupation number, n=0, 1, or 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.I. Schiff, “Quantum Mechanics”, McGraw-Hill, New York (1968)

    Google Scholar 

  2. Y. Tonozawa, Phonon structures in the spectra of solids, J. Luminescence 1,2: 732 (1970)

    Google Scholar 

  3. D. Adler and E.J. Yoffa, Electronic structure of amorphous semiconductors, Phys. Rev. Lett. 36: 1197 (1976)

    Article  ADS  Google Scholar 

  4. P.W. Anderson, Model for the electronic structure of amorphous semiconductores, Phys. Rev. Lett. 34: 953 (1975)

    Article  ADS  Google Scholar 

  5. R.A. Street and N.F. Mott, States in the gap in glassy semiconductors, Phys. Rev. Lett. 35: 1293 (1975)

    Article  ADS  Google Scholar 

  6. M. Kastner, D. Adler, and H. Fritzsche, Valence-alternation model for localized gap states in lone-pair semiconductors, Phys. Rev. Lett. 37: 1504 (1976)

    Article  ADS  Google Scholar 

  7. D. Vanderbilt and J.D. Joannopoulos, Bonding coordination defect in g-Se: a “positive-U” system, Phys. Rev. Lett. 49: 823 (1982)

    Article  ADS  Google Scholar 

  8. G.D. Watkins, Negative-U properties for point defects in silicon, in: “Defects in Semiconductors”, J. Narayan and T.Y. Tan, eds., North Holland, New York (1981)

    Google Scholar 

  9. G.A. Baraff, E.O. Kane, and M. Schluter, Silicon vacancy: a possible “Anderson negative-U” system, Phys. Rev. Lett. 43:956 (1979)

    Article  ADS  Google Scholar 

  10. R.A. Street and D.K. Biegelsen, The spectroscopy of localized states, in: “The Physics of hydrogenated amorphous silicon II”, J. D. Joannopoulos and G. Lucovsky, eds., Springer, Berlin (1984)

    Google Scholar 

  11. R.A. Street, D.K. Biegelsen, W.B. Jackson, N.M. Johnson, and M. Stutzmann, Dopant and defect states in a-Si:H, Phil. Mag. B. 52: 235 (1985)

    Article  Google Scholar 

  12. D. Adler, Defects in amorphous chalcogenides and silicon, J. Phys. (Paris) 42: C4–3 (1981)

    Article  Google Scholar 

  13. Y. Bar-Yam and J.D. Joannopoulos, Dangling Bond in a-Si:H, Phys. Rev. Lett. 56: 2203 (1986)

    Article  ADS  Google Scholar 

  14. D.K. Biegelsen and M. Stutzmann, Hyperfine studies of dangling bonds in amorphous silicon, Phys. Rev. B. 33: 3006 (1986)

    Article  ADS  Google Scholar 

  15. H. Dersch, J. Stuke, and J. Beichler, Electron spin resonance of doped glow-discharge amorphous silicon, Phys. stat. sol, (b) 105: 265 (1981)

    Article  ADS  Google Scholar 

  16. W.B. Jackson, The correlation energy of the dangling silicon bond in a-Si:H, Solid State Commun. 44: 477 (1982)

    Article  ADS  Google Scholar 

  17. This is only true in the limit of a correlation energy, Ueff, which is large compared to the defect band width, ΔED. If Ueff / ΔED, the maximum spin density is given by Ns, max = ∫Emax+U/2 Emax-U/2 N(E)dE = ND Ueff / ΔED, where N(E) is the broad defect spectrum, and Emax is the energy at which N(E) is maximal.

    Google Scholar 

  18. E.H. Poindexter, G.J. Geradi, M.-E. Rueckel, P.J. Caplan, N.M. Johnson, and D.K. Biegelsen, Electronic traps and Pb centers at the Si/SiO2 interface: Band-gap energy distribution, J. Appl. Phys. 56: 2844 (1984)

    Article  ADS  Google Scholar 

  19. M. Stutzmann and J. Stuke, Temperature dependence of ESR spectra of doped amorphous germanium, Phys. stat. sol, (b) 120: 225 (1983)

    Article  ADS  Google Scholar 

  20. W.B. Jackson, S.M. Kelso, C.C. Tsai, J.W. Allen, and S.-J. Oh, Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon, Phys. Rev. B 31 : 5187 (1985)

    Google Scholar 

  21. N.M. Johnson and D.K. Biegelsen, Identification of deep gap states in a-Si:H by photodepopulation induced electron-spin resonance, Phys. Rev. B 31: 4066 (1985)

    Google Scholar 

  22. R.A. Street, J. Kakalios, and T.M. Hayes, Thermal equilibration in doped amorphous silicon, Phys. Rev., to be published

    Google Scholar 

  23. M. Stutzmann, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Stutzmann, M., Jackson, W.B., Street, R.A., Biegelsen, D.K. (1987). Electron Correlation Energies in Hydrogenated Amorphous Silicon. In: Kastner, M.A., Thomas, G.A., Ovshinsky, S.R. (eds) Disordered Semiconductors. Institute for Amorphous Studies Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1841-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1841-5_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9028-5

  • Online ISBN: 978-1-4613-1841-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics