Skip to main content

Dietary Fat and Neoplasia--The Role of Net Energy in Enhancement of Carcinogenesis: Effects of Fat and Calories on the Immune System

  • Chapter
Essential Nutrients in Carcinogenesis

Abstract

The mechanism by which carcinogenesis is enhanced by dietary fat is not understood. We know that a minimum level of essential fatty acids (EFA) is necessary for mammary tumor development and that this level probably exceeds the normal requirements of rats. Once the minimum level of EFA has been supplied, the calorie contribution of dietary fat may account for its enhancement of carcinogenesis. In this regard, we must recognize that the efficiency with which dietary energy is utilized is known to increase as the fat content of the diet is raised. Hence even when fed isocalorically to low fat diets, high fat diets will provide more net energy. Modulation of host immunity has been proposed as a mechanism of action of both fat and calorie intake on neoplasia. We review the literature examining the effects of fat and calories on the cell-mediated immune system, that arm of the immune system most directly responsible for the killing of neoplastic cells.

Supported in part by the College of Agricultural and Life Sciences, University of Wisconsin-Madison, University of Wisconsin-Madison Graduate School, and Wisconsin Agricultural Experiment Station; U.S. Department of Agriculture-Science and Education Administration, Hatch Grant Project No. 2874; U.S. Public Health Service Grant R01-CA2618 and training grant 5-T32-CA09451 from the National Cancer Institute, Department of Health and Human Services; and by unrestricted gift funds administered through the University of Wisconsin-Madison Food Research Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

EFA:

essential fatty acid

DMBA:

7,12-dimethylbenz[a] anthracene

LF:

low fat diet fed ad libitum

HF:

high fat diet fed ad libitum

HFPF:

high fat diet pair fed to LF as RNE

RNE:

relative net energy

NK:

natural killer

PG:

prostaglandin

PUFA:

polyunsaturated fatty acid

SFA:

saturated fatty acid

PEC:

peritoneal exudate cell

References

  1. H. W. Lane, J. S. Butel, C. Howard, et al., The role of high levels of dietary fat in 7,12-dimethylbenzanthracene-induced mouse mammary tumorigenesis: Lack of an effect on lipid peroxidation, Carcinogenesis 6:403 (1985).

    Article  CAS  Google Scholar 

  2. R. M. Hicks, Pathological and biochemical aspects of tumor promotion, Carcinogenesis 4:1209 (1983).

    Article  CAS  Google Scholar 

  3. T. L. Dao and P.-C. Chan, Effect of duration of high fat intake on enhancement of mammary carcinogenesis in rats, J. Natl. Cancer Inst. 71:201 (1983).

    CAS  Google Scholar 

  4. I. Berenblum and P. Shubik, The role of croton oil applications, associated with a single painting of a carcinogen, in tumor induction of the mouse’s skin, Br. J. Cancer 1:379 (1947).

    Article  CAS  Google Scholar 

  5. G. J. Hopkins and K. K. Carroll, Relationship between amount and type of dietary fat in promotion of mammary carcinogenesis induced by 7,12-dimethylbenz(a)anthracene, J. Natl. Cancer Inst. 62:1009 (1979).

    CAS  Google Scholar 

  6. A. E. Rogers, Influence of dietary content of lipids and lipotropic nutrients on chemical carcinogenesis in rats, Cancer Res. 43:2477s (1983).

    CAS  Google Scholar 

  7. G. A. Boissonneault, M. J. Hornshuh, J. W. Simons, et al, Oxygen consumption and body fat content of young lean and obese (OB/OB) mice, Proc. Soc. Exp. Biol. Med. 157:402 (1978).

    CAS  Google Scholar 

  8. E. B. Forbes, R. W. Swift, R. F. Elliott, et al., Relation of fat to economy of food utilization. II. By the mature albino rat, J. Nutr. 31:213 (1946).

    CAS  Google Scholar 

  9. E. B. Forbes, R. W. Swift, E. J. Thacker, et al., Further experiments on the relation of fat to economy of food utilization. II. By the mature albino rat, J. Nutr. 32:397 (1946).

    CAS  Google Scholar 

  10. E. B. Forbes, R. W. Swift, R. F. Elliott, et al., Relation of fat to economy of food utilization. I. By the growing albino rat, J. Nutr. 31:203 (1946).

    CAS  Google Scholar 

  11. E. B. Forbes, R. W. Swift, W. H. James, et al., Further experiments on the relation of fat to economy of food utilization. I. By the growing albino rat, J. Nutr. 32:387 (1946).

    CAS  Google Scholar 

  12. R. K. Boutwell, M. K. Brush, and H. P. Rusch, The stimulating effect of dietary fat on carcinogenesis, Cancer Res. 9:741 (1949).

    CAS  Google Scholar 

  13. G. G. Mateos and J. L. Sell, Influence of graded levels of fat on utilization of pure carbohydrate by the laying hen, J. Nutr. 110:1894 (1980).

    CAS  Google Scholar 

  14. H. Silverstone and A. Tannenbaum, The effect of the proportion of dietary fat on the rate of formation of mammary carcinoma in mice, Cancer Res. 10:448 (1950).

    CAS  Google Scholar 

  15. P.-C. Chan and T. L. Dao, Enhancement of mammary carcinogenesis by a high-fat diet in Fischer, Long-Evans, and Sprague-Dawley rats, Cancer Res. 41:164 (1981).

    CAS  Google Scholar 

  16. Y.-H. Chien, N. R. J. Gascoigne, J. Kavaler, et al., Somatic recombination of a murine T-cell receptor gene, Nature 309:322 (1984).

    Article  CAS  Google Scholar 

  17. S. M. Hedrick, E. A. Nielsen, J. Kavaler, et al., Sequence relationships between putative T-cell receptor peptides and immunoglobulins, Nature 308:153 (1984).

    Article  CAS  Google Scholar 

  18. A. R. Williamson, Genes coding for T-lymphocyte receptors, Immunol. Today 3:68 (1982).

    Article  CAS  Google Scholar 

  19. K. Haskins, J. Kappler, and P. Marrack, The major histocompatibility complex-restricted antigen receptor on T-cells, Annu. Rev. Immunol. 2:51 (1984).

    Article  CAS  Google Scholar 

  20. A. L. deWeck, F. Kristensen, and M. Landy, eds. “Biochemical Characterization of Lymphokines,” Academic Press, New York (1980).

    Google Scholar 

  21. G. S. Stockman and D. M. Muraford, The effect of prostaglandins on the in vitro blastogenic response of human peripheral blood lymphocytes, Exp. Hematol. 2:401 (1974).

    Google Scholar 

  22. R. I. Zuberi and D. H. Katz, Spontaneous proliferation in unfractionated spleen cell cultures: Autologous mixed-lymphocyte reactions (AMLR) which can be differentially regulated by prostaglandins and lymphokines, Cell. Immunol. 84:299 (1984).

    Article  CAS  Google Scholar 

  23. A. Mantovani, T. R. Jerrells, J. H. Dean, et al., Cytolytic and cytostatic activity on tumor cells of circulating human monocytes, Int. J. Cancer 23:18 (1979).

    Article  CAS  Google Scholar 

  24. R. Keller, Macrophage-mediated natural cytotoxicity against various target cells in vitro. I. Macrophages from diverse anatomical sites and different strains of rats and mice, Br. J. Cancer 37:732 (1978).

    Article  CAS  Google Scholar 

  25. A. Tagliabue, A. Mantovani, M. Kilgallen, et al., Natural cytotoxicity of mouse monocytes and macrophages, J. Immunol. 122:2363 (1979).

    CAS  Google Scholar 

  26. R. C. Levy, G. M. Yhaw, and A. Lo Buglio, Human monocyte, lymphocyte, and granulocyte antibody-dependent cell-mediated cytotoxicity towards tumor cells. I. General characteristics of cytolysis, J. Immunol. 123:594 (1979).

    CAS  Google Scholar 

  27. J. S. Haskill and J. W. Fett, Possible evidence for antibody-dependent macrophage-mediated cytotoxicity directed against murine adenocarcinoma cells in vivo, J. Immunol. 117:1992 (1976).

    CAS  Google Scholar 

  28. J. R. David and H. G. Remold, The activation of macrophages by lymphokines, in: “Biology of Lymphokines,” S. Cohen, E. Pick, and J. J. Oppenheim, eds., Academic Press, New York (1979).

    Google Scholar 

  29. R. M. Schultz, N. A. Paulidis, W. A. Stylos, et al., Regulation of macrophage tumoricidal function: A role for prostaglandins of the E series, Science 202:320 (1978).

    Article  CAS  Google Scholar 

  30. J. I. Kurland, R. S. Bockman, H. E. Broxmeyer, et al., Limitation of excessive myelopoiesis by the intrinsic modulation of macrophage-derived prostaglandin E, Science 199:552 (1978).

    Article  CAS  Google Scholar 

  31. J. I. Kurland, H. E. Broxmeyer, L. M. Pelus, et al., Role of monocyte-macrophage-derived colony-stimulating factor and prostaglandin E in the positive and negative feedback control of myeloid stem cell proliferation, Blood 52:388 (1978).

    CAS  Google Scholar 

  32. W. F. Stenson and C. W. Parker, Prostaglandins, macrophages, and immunity, Immunol. Today 125:1 (1980).

    CAS  Google Scholar 

  33. M. Rabinovitch, R. E. Manejias, M. Russo, et al., Increased spreading of macrophages from mice treated with interferon inducers, Cell. Immunol. 29:86 (1977).

    Article  CAS  Google Scholar 

  34. E.-L. Larsson, N. N. Iscove, and A. Coutinho, Two distinct factors are required for induction of T-cell growth, Nature 283:664 (1980).

    Article  CAS  Google Scholar 

  35. J. J. Oppenheim and I. Gery, Interleukin 1 is more than an interleukin, Immunol. Today 3:113 (1982).

    Article  CAS  Google Scholar 

  36. R. B. Herberman, Cell mediated immunity to tumor cells, Adv. Cancer Res. 19:207 (1974).

    Article  CAS  Google Scholar 

  37. R. B. Herberman, Immunoregulation and natural killer cells, Mol. Immunol. 19:1313 (1982).

    Article  CAS  Google Scholar 

  38. R. B. Herberman and J. R. Ortaldo, Natural killer cells: Their role in defenses against disease, Science 214:24 (1981).

    Article  CAS  Google Scholar 

  39. J. E. Talmadge, K. M. Meyers, D. J. Prieur, et al., Role of NK cells in tumor growth and metastasis in beige mice, Nature 284:622 (1980).

    Article  CAS  Google Scholar 

  40. S. Habu, K. Shimanura, K. Akamatsu, et al., Protective role of natural killer cells in tumor growth and viral infection in mice, Exp. Cell Biol. 52:40 (1984).

    CAS  Google Scholar 

  41. K. Karre, G. U. Klein, R. Kiessling, et al., Low natural resistance to syngeneic leukaemias in natural killer-deficient mice, Nature 284:624 (1980).

    Article  CAS  Google Scholar 

  42. R. Kiessling, G. Pefranyi, G. Klein, et al., Non-T-cell resistance against a mouse Moloney lymphoma, Int. J. Cancer 17:275 (1976).

    Article  CAS  Google Scholar 

  43. N. L. Warner, M. F. Woodruff, and R. C. Burton, Inhibition of the growth of lymphoid tumors in syngeneic athymic (nude) mice, Int. J. Cancer 20:146 (1977).

    Article  CAS  Google Scholar 

  44. M. J. Mattes, S. O. Sharrow, R. B. Herberman, et al., Identification and separation of Thy-1 positive mouse spleen cells active in natural cytotoxicity and antibody-dependent cell-mediated cytotoxicity, J. Immunol. 123:2851 (1979).

    CAS  Google Scholar 

  45. G. C. Koo and A. Hatzfeld, Antigenic phenotype of mouse natural killer cells, in: “Natural Cell-Mediated Immunity Against Tumors,” R. B. Herberman, ed., Academic Press, New York (1980).

    Google Scholar 

  46. M.-L. Lohmann-Matthes and W. Domzig, Natural cytotoxicity of macrophage precursor cells and of mature macrophages, in: “Natural Cell-Mediated Immunity Against Tumors,” R. B. Herberman, ed., Academic Press, New York (1980).

    Google Scholar 

  47. T. Timonen, J. R. Ortaldo, and R. B. Herberman, Characteristics of human large granular lymphocytes and relationships to natural killer and K cells, J. Exp. Med. 153:569 (1981).

    Article  CAS  Google Scholar 

  48. C. W. Reynolds, T. Timonen, and R. B. Herberman, Natural killer (NK) cell activity in the rat. I. Isolation and characterization of the effector cells, J. Immunol. 127:282 (1981).

    CAS  Google Scholar 

  49. J. R. Ortaldo and R. B. Herberman, Specificity of NK cells, in: “NK Cells: Fundamental Aspects and Role in Cancer, Human Cancer Immunology, Vol. 4,” B. Serrou, C. Rosenfeld, and R. B. Herberman, eds., Elsevier/North-Holland, Amsterdam (1982).

    Google Scholar 

  50. A. Senik, I. Gresser, C. Maury, et al., Enhancement by interferon of natural killer cell activity in mice, Cell. Immunol. 44:186 (1979).

    Article  CAS  Google Scholar 

  51. R. B. Herberman, J. R. Ortaldo, J. Y. Djeu, et al., Role of interferon in regulation of cytotoxicity by natural killer cells and macrophages, Ann. N.Y. Acad. Sci. 350:63 (1980).

    Article  CAS  Google Scholar 

  52. H. S. Koren and K. H. Leung, Modulation of human NK cells by interferon and prostaglandin E2, Mol. Immunol. 19:1341 (1982).

    Article  CAS  Google Scholar 

  53. G. Trinchieri, D. Santoli, R. R. Dee, et al., Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells, J. Exp. Med. 147:1299 (1978).

    Article  CAS  Google Scholar 

  54. M. J. Brunda, R. B. Herberman, and H. T. Holden, Inhibition of murine natural killer cell activity by prostaglandins, J. Immunol. 124: 2682 (1980).

    CAS  Google Scholar 

  55. A. D. Bankhurst, The modulation of human natural killer cell activity by prostaglandins, J. Clin. Lab. Immunol. 7:85 (1982).

    CAS  Google Scholar 

  56. K. L. Erickson, C. J. McNeill, M. E. Gershwin, et al., Influence of dietary fat concentration and saturation on immune ontogeny in mice, J. Nutr. 110:1555 (1980).

    CAS  Google Scholar 

  57. J. A. Levy, A. B. Ibrahim, T. Shirai, et al., Dietary fat affects immune response, production of antiviral factors and immune complex disease in NZB/NZW mice, Proc. Natl. Acad. Sci. U.S.A. 79:1974 (1982).

    Article  CAS  Google Scholar 

  58. K. L. Erickson, D. A. Adams, and C. J. McNeill, Dietary lipid modulation of immune responsiveness. Lipids 18:468 (1983).

    Article  CAS  Google Scholar 

  59. K. L. Erickson, Dietary fat influences on murine melanoma growth and lymphocyte-mediated cytotoxicity, J. Natl. Cancer Inst. 72:115 (1984).

    CAS  Google Scholar 

  60. P. M. Newberne, Dietary fat, immunological response, and cancer in rats, Cancer Res. 41:3783 (1981).

    CAS  Google Scholar 

  61. G. A. Boissonneault and P. V. Johnston, Essential fatty acid deficiency, prostaglandin synthesis and humoral immunity in Lewis rats, J. Nutr. 113:1187 (1983).

    CAS  Google Scholar 

  62. I. L. Bonta and M. J. Parnham, Prostaglandins, essential fatty acids,and cell-tissue interactions in immune-inflammation, in: “Progress in Lipid Research, vol. 20,” R. T. Holman, ed., Pergamon Press, New York (1981).

    Google Scholar 

  63. H. J. Galli, C. Spangnualo, E. Bosisio, et al., Dietary essential fatty acids, and prostaglandins in the central nervous system, in: “Advances in Prostaglandin and Thromboxane Research, vol. 4,” F. Coceani and P. M. Olley, eds., Raven Press, New York (1978).

    Google Scholar 

  64. P. G. Weston and P. V. Johnston, Incidence and severity of experimental allergic encephalomyelitis and cerebral prostaglandin synthesis in essential fatty acid-deficient and aspirin-treated rats, Lipids 13:867 (1978).

    Article  CAS  Google Scholar 

  65. P. G. Weston and P. V. Johnston, Cerebral prostaglandin synthesis during the dietary and pathological stresses of essential fatty acid deficiency and experimental allergic encephalomyelitis, Lipids 13:408 (1978).

    Article  CAS  Google Scholar 

  66. E. J. Christ and D. H. Nugteren, The biosynthesis and possible function of prostaglandins in adipose tissue, Biochim. Biophys. Acta 218:296 (1970).

    CAS  Google Scholar 

  67. W. C. Tan and O. S. Privett, Studies on the synthesis of prostaglandins in the vesicular glands of essential fatty acid-deficient and hypophysectomized rats, Biochim. Biophys. Acta 296:586 (1978).

    Google Scholar 

  68. M. M. Mathias and J. Dupont, The relationship of dietary fats to prostaglandin biosynthesis, Lipids 14:247 (1979).

    Article  CAS  Google Scholar 

  69. D. P. Selivonchick and P. V. Johnston, Fat deficiency in rats during development of the central nervous system and susceptibility to experimental allergic encephalomyelitis, J. Nutr. 105:288 (1975).

    CAS  Google Scholar 

  70. J. Clausen and J. Moller, Allergic encephalomyelitis induced by brain antigen after deficiency in polyunsaturated fatty acids during myelination, Acta Neurol. Scand. 43:375 (1967).

    Article  CAS  Google Scholar 

  71. C. J. Meade, J. Mertin, J. Sheena, et al., Reduction by linoleic acid of the severity of experimental allergic encephalomyelitis in the guinea pig, J. Neurol. Sci. 35:291 (1978).

    Article  CAS  Google Scholar 

  72. J. Mertin and A. Stackpoole, Suppression by essential fatty acids of experimental allergic encephalomyelitis is abolished by indo-methacin, Prostaglandins Med. 1:283 (1978).

    Article  CAS  Google Scholar 

  73. J. Mertin and A. Stackpoole, Prostaglandin precursors and the cell-mediated immune response, Cell. Immunol. 62:293 (1981).

    Article  CAS  Google Scholar 

  74. G. A. Boissonneault and P. V. Johnston, Humoral immunity in essential fatty acid-deficient rats and mice: Effect of route of injection of antigen, J. Nutr. 114:89 (1984).

    CAS  Google Scholar 

  75. D. R. Webb and I. Nowowiejski, The role of prostaglandins in the control of the primary 19S immune response to SRBC, Cell. Immunol. 33:1 (1977).

    Article  CAS  Google Scholar 

  76. A. M. Fulton and J. G. Levy, The possible role of prostaglandins in mediating immune suppression by nonspecific T suppressor cells, Cell. Immunol. 52:29 (1980).

    Article  CAS  Google Scholar 

  77. M. Zimecki and D. R. Webb, The role of prostaglandins in the control of the immune response to an autologous red blood cell antigen (Hb), Clin. Immunol. Immunopathol. 8:420 (1977).

    Article  CAS  Google Scholar 

  78. J. W. DeWille, P. J. Fraker, and D. R. Romsos, Effects of essential fatty acid deficiency, and various levels of dietary polyunsaturated fatty acids on humoral immunity in mice, J. Nutr. 109:1018 (1979).

    CAS  Google Scholar 

  79. J. W. DeWille, P. J. Fraker, and D. R. Romsos, Effects of dietary fatty acids on delayed-type hypersensitivity in mice, J. Nutr. 111:2039 (1981).

    CAS  Google Scholar 

  80. L. M. Lichtenstein, E. Gillespie, H. R. Bourne, et al., The effects of a series of prostaglandins on in vitro models of the allergic response and cellular immunity, Prostaglandins 2:519 (1972).

    Article  CAS  Google Scholar 

  81. M. Plaut, The role of cyclic AMP in modulating cytotoxic T lymphocytes, J. Immunol. 123:692 (1979).

    CAS  Google Scholar 

  82. D. R. Webb and I. Nowowiejski, Mitogen-induced changes in lymphocyte prostaglandin levels: A signal for the induction of suppressor cell activity, Cell. Immunol. 41:72 (1978).

    Article  CAS  Google Scholar 

  83. D. R. Webb and A. T. Jamieson, Control of mitogen-induced transformation: Characterization of a splenic suppressor cell and its mode of action, Cell. Immunol. 24:45 (1976).

    Article  Google Scholar 

  84. J. S. Goodwin, A. D. Bankhurst, and R. P. Messner, Suppression of human T-cell mitogenesis by prostaglandins. Existence of a prosta-glandin-producing suppressor cell, J. Exp. Med. 146:1719 (1977).

    Article  CAS  Google Scholar 

  85. A. Fischer, A. Durandy, and C. Griscelli, Role of prostaglandin E2 in the induction of nonspecific T-lymphocyte suppressor activity, J. Immunol. 126:1452 (1981).

    CAS  Google Scholar 

  86. R. P. Donnelly and T. J. Rogers, Inhibitors of prostaglandin synthesis block the induction of staphylococcal enterotoxin B-activated T-suppressor cells, Cell. Immunol. 81:61 (1983).

    Article  CAS  Google Scholar 

  87. M. Zoller and H. Wigzell, Normally occurring inhibitory cells for natural killer cell activity. II. Characteristics of the inhibitory cell, Cell. Immunol. 74:27 (1982).

    Article  CAS  Google Scholar 

  88. M. E. Goldyne and J. D. Stobo, Prostaglandin E2 as a modulator of macroρhage-T lymphocyte interactions, J. Invest. Dermatol. 74:297 (1980).

    Article  CAS  Google Scholar 

  89. D. Gordon, M. A. Bray, and J. Morley, Control of lymphokine secretion by prostaglandins, Nature 262:401 (1976).

    Article  CAS  Google Scholar 

  90. C. Walker, F. Kristensen, F. Bettens, et al., Lymphokine regulation of activated (G1) lymphocytes. I. Prostaglandin E2-induced inhibition of interleukin-2 production, J. Immunol. 130:1770 (1983).

    CAS  Google Scholar 

  91. C. Kubo, B. C. Johnson, N. K. Day, et al., Calorie source, calorie restriction, immunity and aging of (NZB/NZW) F1 mice, J. Nutr. 114:1884 (1984).

    CAS  Google Scholar 

  92. R. L. Walford, R. K. Liu, M. Gerbose-Delima, et al., Long-term dietary restriction and immune function in mice: Response to sheep red blood cells and to mitogenic agents, Mech. Aging Dev. 2:447 (1974).

    Article  Google Scholar 

  93. R. H. Weindruch, J. A. Kristie, K. E. Cheney, et al., Influence of controlled dietary restriction on immunologic function and aging, Fed. Proc. 38:2007 (1979).

    CAS  Google Scholar 

  94. G. Fernandes, P. Friend, E. J. Yunis, et al., Influence of dietary restriction on immunologic function and renal disease in (NZB x NZW) F1 mice, Proc. Natl. Acad. Sci. U.S.A. 75:1500 (1978).

    Article  CAS  Google Scholar 

  95. R. Weindruch, B. H. Devens, H. V. Raff, et al., Influence of dietary restriction and aging on natural killer cell activity in mice, J. Immunol. 130:993 (1983).

    CAS  Google Scholar 

  96. L. K. L. Jung, M. A. Palladino, S. Calvano, et al., Effect of calorie restriction on the production and responsiveness to interleukin-2 in (NZB x NZW) F1 mice, Clin. Immunol. Immunopathol. 25:295 (1982).

    Article  CAS  Google Scholar 

  97. A. Farzad, N. S. Penneys, A. Ghaffar, et al., PGE2 and PGF2α biosynthesis in stimulated and nonstimulated peritoneal preparations containing macrophages, Prostaglandins 14:829 (1977).

    Article  CAS  Google Scholar 

  98. C. A. Rubio, Antitumoral activity of indomethacin on experimental esophageal tumors, J. Natl. Cancer Inst. 72:705 (1984).

    CAS  Google Scholar 

  99. C. A. Carter, R. J. Milholland, W. Shea, et al., Effect of prostaglandin synthesis inhibitor indomethacin on 7,12-dimethylbenz(a)-anthracene-induced mammary tumorigenesis in rats fed different levels of fat, Cancer Res. 43:3559 (1983).

    CAS  Google Scholar 

  100. T. Kudo, T. Narisawa, and S. Abo, Antitumor activity of indomethacin on methylazoxymethanol-induced large bowel tumors in rats, Gann 71:260 (1980).

    CAS  Google Scholar 

  101. A. M. Fulton and J. G. Levy, Inhibition of murine tumor growth and prostaglandin synthesis by indomethacin, Int. J. Cancer 26:669 (1980).

    Article  CAS  Google Scholar 

  102. A. Trevisani, E. Ferretti, M. Capuzzo, et al., Elevated levels of prostaglandin E2 in yoshida hepatoma and the inhibition of tumor growth by non-steroidal anti-inflammatory drugs, Br. J. Cancer 41:341 (1980).

    Article  CAS  Google Scholar 

  103. A. M. Fulton, In vivo effects of indomethacin on the growth of murine mammary tumors, Cancer Res. 44:2416 (1984).

    CAS  Google Scholar 

  104. G. M. Killmorgen, M. M. King, S. D. Kosanke, et al., Influence of dietary fat and indomethacin on the growth of transplantable mammary tumors in rats, Cancer Res. 43:4714 (1983).

    Google Scholar 

  105. J. J. Oppenheim, W. J. Koupman, C. M. Wahl, et al., Prostaglandin E2 rather than lymphocyte-activating factor produced by activated human mononuclear cells stimulates increases in murine thymocyte cAMP, Cell. Immunol. 49:64 (1980).

    Article  CAS  Google Scholar 

  106. W. D. Cantarow, H. T. Cheung, and G. Sundharadas, Effects of prostaglandins on the spreading, adhesion and migration of mouse peritoneal macrophages, Prostaglandins 16:39 (1978).

    Article  CAS  Google Scholar 

  107. G. A. Boissonneault, Essential fatty acid deficiency: Effects on prostaglandin synthesis and immune response, Ph.D. dissertation, Univ. Illinois, Urbana, Illinois (1982).

    Google Scholar 

  108. J. V. Friend, S. O. Lock, M. I. Gurr, et al., Effect of different dietary lipids on the immune responses of Hartley strain guinea pigs, Int. Arch. Allergy Appl. Immunol. 62:292 (1980).

    Article  CAS  Google Scholar 

  109. P. Davies and A. C. Allison, Secretion of macrophage enzymes in relation to the pathogenesis of chronic inflammation, in: “Immunobiology of the Macrophage,” D. S. Nelson, ed., Academic Press, New York (1976).

    Google Scholar 

  110. E. S. Razin, S. Bauminger, and A. Globerson, Effect of prostaglandins on phagocytosis of sheep erythrocytes by mouse peritoneal macrophages, J. Reticuloendothel. Soc. 23:237 (1977).

    Google Scholar 

  111. H. J. Schroit and R. Gallily, Macrophage fatty acid composition and phagocytosis: Effect of unsaturation on cellular phagocytic activity, Immunology 36:199 (1979).

    CAS  Google Scholar 

  112. E. M. Mahoney, A. L. Hamill, W. A. Scott, et al., Response of endocytosis to altered fatty acyl composition of macrophage phospholipids, Proc. Natl. Acad. Sci. U.S.A. 74:4896 (1977).

    Article  Google Scholar 

  113. J. J. Vitale and S. A. Broitman, Lipids and immune function, Cancer Res. 41:3706 (1981).

    CAS  Google Scholar 

  114. C. Rice, D. Hudig, R. S. Newton, et al., Effect of unsaturated fatty acids on human lymphocytes. Disparate influences of oleic and linolenic acids on natural cytotoxicity, Clin. Immunol. Immunopathol. 20:389 (1981).

    Article  CAS  Google Scholar 

  115. K. Kuribayashi, S. Gillis, D. E. Kern, et al., Murine NK cell cultures: Effects of interleukin-2 and interferon on cell growth and cytotoxic reactivity, J. Immunol. 126:2321 (1981).

    CAS  Google Scholar 

  116. A. Rey, B. Klein, D. Zagury, et al., Diminished interleukin-2 activity produced in cancer patients bearing solid tumors and its relationship with natural killer cells, Immunol. Lett. 6:175 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Boissonneault, G.A., Elson, C.E., Pariza, M.W. (1986). Dietary Fat and Neoplasia--The Role of Net Energy in Enhancement of Carcinogenesis: Effects of Fat and Calories on the Immune System. In: Poirier, L.A., Newberne, P.M., Pariza, M.W. (eds) Essential Nutrients in Carcinogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1835-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1835-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9025-4

  • Online ISBN: 978-1-4613-1835-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics