The Role of Methionine in Carcinogenesis in Vivo

  • Lionel A. Poirier


The effects of methionine on carcinogenesis and tumor development have been studied intermittently for over 35 years. These studies have generally shown that methionine confers some degree of protection against the development of liver tumors by hepatocarcinogens. Such protective effects by supplemental dietary methionine are more pronounced in animals fed methionine- and choline-deficient diets rather than methionine- and choline-adequate diets. To date few if any protective effects of methionine have been observed against tumor formation in extrahepatic tissues. The effects of methionine on hepatocarcinogenesis appear to correlate well with its effects on the liver content of S-adenosylmethionine, the chief physiologic methyl donor. Perturbation of the methyl pool is known to alter the extent of methylation of membrane phospholipids, RNA, and DNA. Thus several plausible mechanisms by which methionine may modify the carcinogenic process center upon the aberrant methylation of macromolecules.


Oncogene Expression Hepatic Level Choline Deficiency Methionine Adenosyltransferase High Dietary Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

















Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. H. Mudd and H. L. Levy, Disorders of transsulfuration, in: “The Metabolic Basis of Inherited Disease,” J. B. Stansbury, J. B. Wyngaarden, D. S. Frederickson, et al., eds., McGraw-Hill, New York (1983).Google Scholar
  2. 2.
    L. R. Barrows and P. N. Magee, Nonenzymatic methylation of DNA by S-adenosylmethionine, In Vitro Carcinog. 3:349 (1982).CrossRefGoogle Scholar
  3. 3.
    M. Naslund, D. Segerbock, and A. Kolman, S-Adenosylmethionine, an endogenous alkylating agent, Mutat. Res. 119:229 (1983).CrossRefGoogle Scholar
  4. 4.
    J. A. Miller and E. C. Miller, The metabolic activation of aromatic amines and amides, Prog. Exp. Tumor Res. 11:273 (1969).Google Scholar
  5. 5.
    H. Terayama, Aminoazo carcinogenesis-methods and biochemical problems, in: “Methods in Cancer Research,” H. Busch, ed., Academic Press, New York (1967).Google Scholar
  6. 6.
    J. A. Miller and E. C. Miller, The carcinogenic aminoazo dyes, Cancer Res. 1:339 (1953).CrossRefGoogle Scholar
  7. 7.
    P. L. Day, L. D. Payne, and J. S. Dinning, Procarcinogenic effect of vitamin B12 on p-dimethylaminoazobenzene-fed rats, Proc. Soc. Exp. Biol. Med. 74:854 (1950).Google Scholar
  8. 8.
    E. Farber, Ethionine carcinogenesis, Adv. Cancer Res. 7:383 (1963).CrossRefGoogle Scholar
  9. 9.
    Z. Brada, N. H. Altman, M. Hill, et al., The effect of methionine on the progression of hepatocellular carcinoma induced by ethionine, Res. Commun. Chem. Pathol. Pharmacol. 38:157 (1982).Google Scholar
  10. 10.
    E. C. Miller and J. A. Miller, Approaches to the mechanisms and control of chemical carcinogenesis, in: “Environment and Cancer: The University of Texas M. D. Anderson Hospital and Tumor Institute at Houston,” Williams and Wilkins, Baltimore (1972).Google Scholar
  11. 11.
    A. E. Rogers and P. M. Newberne, Lipotrope deficiency in experimental carcinogenesis, Nutr. Cancer 2:104 (1980).CrossRefGoogle Scholar
  12. 12.
    Z. Brada, N. H. Altman, M. Hill, et al., Effect of methionine (M) on progression of tumors induced by N-2-fluorenylacetamide (FAA), Fed. Proc. 43:591 (1984).Google Scholar
  13. 13.
    L. A. Poirier, Hepatocarcinogenesis by diethylnitrosamine in rats fed high dietary levels of lipotropes, J. Natl. Cancer Inst. 54:137 (1975).Google Scholar
  14. 14.
    P. M. Newberne, Lipotropic factors and oncogenesis, this volume.Google Scholar
  15. 15.
    H. Shinozuka, S. L. Katyal, and M. I. Perera, Choline deficiency and chemical carcinogenesis, this volume.Google Scholar
  16. 16.
    Y. B. Mikol, K. L. Hoover, D. Creasia, et al., Hepatocarcinogenesis in rats fed methyl-deficient, amino acid-defined diets, Carcinogenesis 4:1619 (1983).CrossRefGoogle Scholar
  17. 17.
    A. K. Ghoshal and E. Farber, Induction of liver cancer by a diet deficient in methionine and choline, Carcinogenesis 5:1367 (1984).CrossRefGoogle Scholar
  18. 18.
    L. A. Poirier, Y. B. Mikol, K. Hoover, et al., The inhibition of methionine and choline of liver carcinoma formation in male C3H mice fed phenobarbital, Proc. Am. Assoc. Cancer Res. 25:132 (1984).Google Scholar
  19. 19.
    W. R. Leopold, J. A. Miller, and E. C. Miller, Comparison of carcinogenic, mutagenic and biochemical properties of S-vinyl-homocysteine and ethionine, Cancer Res. 42:4364 (1982).Google Scholar
  20. 20.
    K. L. Hoover and L. A. Poirier, Hepatocarcinogenicity of dietary ethionine in Swiss, C3H and BALB/c mice, Proc. Am. Assoc. Cancer Res. 25:78 (1984).Google Scholar
  21. 21.
    L. A. Poirier, P. H. Grantham, and A. E. Rogers, The effects of a marginally lipotrope-deficient diet on the hepatic levels of S-adenosylmethionine and on the urinary metabolites of 2-acetylaminofluorene in rats, Cancer Res. 37:744 (1977).Google Scholar
  22. 22.
    Y. S. S. Buehring, L. A. Poirier, and E. L. R. Stokstad, Folate deficiency in the livers of diethylnitrosamine-treated rats, Cancer Res. 36:2775 (1976).Google Scholar
  23. 23.
    N. Shivapurkar and L. A. Poirier, Tissue levels of S-adenosyl- methionine and S-adenosylhomocysteine in rats fed methyl-deficient, amino acid-defined diets for one to five weeks, Carcinogenesis 4:1051 (1983).CrossRefGoogle Scholar
  24. 24.
    L. A. Poirier, N. Shivapurkar, C. L. Hyde, et al., The effect of the chronic administration of liver carcinogens and tumor promoters on the hepatic levels of S-adenosylmethionine in rats, in; “Biochemistry of S-Adenosylmethionine and Related Compounds,” E. Usdin, R. T. Borchardt, and C. R. Creveling, eds., MacMillan Press, London (1982).Google Scholar
  25. 25.
    C. L. Hyde and L. A. Poirier, Hepatic levels of S-adenosylethionine and j3-adenosylmethionine in rats and hamsters during subchronic feeding of DL-ethionine, Carcinogenesis 3:309 (1982).CrossRefGoogle Scholar
  26. 26.
    N. Shivapurkar and L. A. Poirier, Decreased levels of S-adenosyl- methionine in the livers of rats fed phenobarbital and DDT, Carcinogenesis 4:1051 (1982).CrossRefGoogle Scholar
  27. 27.
    N. Shivapurkar and L. A. Poirier, Levels of S-adenosylmethionine and S-adenosylethionine in four different tissues of male weanling rats during subchronic feeding of DL-ethionine, Biochem. Pharmacol. 34:373 (1985).CrossRefGoogle Scholar
  28. 28.
    B. Lorabardi, P. Pani, F. F. Schlunk, et al., Labeling of liver and plasma lecithins after injection of 1-2-14C-2-dimethylaminoethanol and 14C-L-methionine-methyl to choline deficient rats, Lipids 4:67 (1969).CrossRefGoogle Scholar
  29. 29.
    D. R. Hoffman, J. A. Honig, and W. E. Cornatzer, Effects of a methyl- deficient diet on rat liver phosphatidylcholine biosyntheses, Can. J. Biochem. 59:543 (1981).Google Scholar
  30. 30.
    D. L. Young, G. Powell, and W. D. McMillan, Phenobarbital-induced alterations in phosphatidylcholine and triglyceride synthesis in hepatic endoplasmic reticulum, J. Lipid Res. 12:1 (1971).Google Scholar
  31. 31.
    L. R. Rohrschneider and R. K. Boutwell, The early stimulation of phospholipid metabolism by 12-0-tetradecanoyl-ρhorbol-13-acetate and its specificity for tumor promotion, Cancer Res. 33:1945 (1973).Google Scholar
  32. 32.
    F. Hirata and J. Axelrod, Phospholipid methylation and biological signal transmission, Science 209:1082 (1981).CrossRefGoogle Scholar
  33. 33.
    R. O. Recknagel and E. A. Glende, Jr., Lipid peroxidation: A specific form of cellular injury, in: “Handbook of Physiology, Sec. 9,” K. H. K. Lee, ed., Waverly Press, Baltimore (1977).Google Scholar
  34. 34.
    M. I. R. Perera, A. J. Demetris, S. L. Katyal, et al., Lipid peroxidation as a possible underlying mechanism of liver tumor promotion by a choline-deficient diet, Proc. Am. Assoc. Cancer Res. 25:141 (1984).Google Scholar
  35. 35.
    T. H. Rushmore, Y. P. Lin, E. Farber, et al., Rapid lipid peroxidation in the nuclear fraction of rat liver induced by a diet deficient in choline and methionine, Cancer Lett. 24:251 (1984).CrossRefGoogle Scholar
  36. 36.
    R. Konnagi, An activation mechanism of platelet phospholipases, in: “Biochemistry of S-Adenosylmethionine and Related Compounds,” E. Usdin, R. T. Borchardt, and C. R. Creveling, eds., MacMillan Press, London (1982).Google Scholar
  37. 37.
    L. Levine, Arachidonic acid transformation and tumor production, Adv. Cancer Res. 35:49 (1981).CrossRefGoogle Scholar
  38. 38.
    J. K. Christman, P. Price, L. Pedrinan, et al., Correlation between hypomethylation of DNA and expression of globin genes in Friend erythroleukemia cells, Eur. J. Biochem. 81:53 (1977).CrossRefGoogle Scholar
  39. 39.
    R. Holliday, A new theory of carcinogenesis, Br. J. Cancer 40:513 (1979).CrossRefGoogle Scholar
  40. 40.
    A. Razin and A. D. Riggs, DNA methylation and gene function, Science 210:604 (1980).CrossRefGoogle Scholar
  41. 41.
    A. D. Riggs and P. A. Jones, 5-Methylcytosine, gene regulation and cancer, Adv. Cancer Res. 40:1 (1983).CrossRefGoogle Scholar
  42. 42.
    A. P. Feinberg and B. Vogelstein, Hypomethylation distinguishes genes of some human cancers from their normal counterparts, Nature 301:89 (1983).CrossRefGoogle Scholar
  43. 43.
    National Cancer Institute, “Bioassay of 5-Azacytidine for Possible Carcinogenicity, Technical Report Series No. 42, DHEW Pub. No. (NIH 78-842),” U.S. Govt. Print. Off., Washington, D.C. (1978).Google Scholar
  44. 44.
    G. D. Stoner, M. B. Shimkin, A. J. Kniazefe, et al., Test for carcinogenicity of food additives and chemotherapeutic agents by the pulmonary tumor response in strain A mice, Cancer Res. 33:3069 (1973).Google Scholar
  45. 45.
    B. I. Carr, J. G. Reilly, S. S. Smith, et al., The tumorigenicity of 5-azacytidine in the male Fischer rat, Carcinogenesis 5:1583 (1984).CrossRefGoogle Scholar
  46. 46.
    J. Nyce, S. Weinhouse, and P. N. Magee, 5-Methylcytosine depletion during tumor development: An extension of the miscoding concept, Br. J. Cancer 48:463 (1983).CrossRefGoogle Scholar
  47. 47.
    R. M. Hoffman, Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis, Biochem. Biophys. Acta 738:49 (1984).Google Scholar
  48. 48.
    J. N. Lapeyre and F. F. Becker, 5-Methylcytosine content of nuclear DNA during chemical hepatocarcinogenesis and in carcinomas which result, Biochem. Biophys. Res. Commun. 87:698 (1979).CrossRefGoogle Scholar
  49. 49.
    N. Shivapurkar, M. J. Wilson, and L. A. Poirier, Hypomethylation of DNA in ethionine-fed rats, Carcinogenesis 5:989 (1984).CrossRefGoogle Scholar
  50. 50.
    M. J. Wilson, N. Shivapurkar, and L. A. Poirier, Hypomethylation of hepatic nuclear DNA in rats fed with a carcinogenic methyl-deficient diet, Biochem. J. 218:987 (1984).Google Scholar
  51. 51.
    E. Wainfan, Isolation of hypomethylated tRNA from livers of rats fed lipotrope-deficient (methyl-deficient) diet, Fed. Proc. 44:411 (1985).Google Scholar
  52. 52.
    A. Denda, P. M. Rao, S. Rajalakshami, et al., 5-Azacytidine potentiates initiation by chemical carcinogens in rat liver, Carcinogenesis 6:145 (1985).CrossRefGoogle Scholar
  53. 53.
    N. Fausto and P. A. Shank, Oncogene expression in liver regeneration and hepatocarcinogenesis, Hepatology 3:1016 (1983).CrossRefGoogle Scholar
  54. 54.
    J. Groffen, N. Heisterkamp, G. Blennerhassett, et al., Regulation of viral and cellular oncogene expression by cytosine methylation, Virology 126:213 (1983).CrossRefGoogle Scholar
  55. 55.
    M. L. McGeady, C. Jhappan, R. Ascione, et al., In vitro methylation of specific regions of the cloned Moloney sarcoma virus genome inhibits its transforming activity, Mol. Cell. Biol. 3:305 (1983).Google Scholar
  56. 56.
    A. P. Feinberg and B. Vogelstein, Hypomethylation of ras oncogenes in primary human cancers, Biochem. Biophys. Res. Commun. 111:47 (1983).CrossRefGoogle Scholar
  57. 57.
    L. R. Barrows and R. C. Shank, Aberrant methylation of liver DNA in rats during hepatotoxicity, Toxicol. Appl. Pharmacol. 60:334 (1981).CrossRefGoogle Scholar
  58. 58.
    T. Sugimura, S. M. Birnbaum, M. Winitz, et al., Quantitative nutritional studies with water-soluble chemically defined diets. VIII. Forced feeding of diets each lacking in one essential amino acid, Arch. Biochem. Biophys. 81:448 (1959).CrossRefGoogle Scholar
  59. 59.
    L. A. Poirier and M. J. Wilson, The elevated requirement for methionine by transformed rat liver epithelial cells in vitro, Ann. N.Y. Acad. Sci. 349:283 (1980).CrossRefGoogle Scholar
  60. 60.
    B. C. Halpern, B. R. Clark, D. N. Hardy, et al., The effect of replacement of methionine by homocystine on survival of malignant and normal adult mammalian cells in culture, Proc. Natl. Acad. Sci. U.S.A. 71:1133 (1974).CrossRefGoogle Scholar
  61. 61.
    Y. B. Mikol and M. Lipkin, Methionine dependence in skin fibroblasts of humans affected by familial colon cancer or Gardner’s syndrome, J. Natl. Cancer Inst. 72:19 (1984).Google Scholar
  62. 62.
    R. G. Hendrickse, J. B. S. Coulter, S. M. Lamplugh, et al., Aflatoxins and kwashiorkor: A study in Sudanese children, Br. Med. J. 285:843 (1982).CrossRefGoogle Scholar
  63. 63.
    M. D. Reuber, Hyperplastic and early neoplastic lesions of the liver in rats of varying ages with dietary-induced cirrhosis, Tumori 55:79 (1969).Google Scholar
  64. 64.
    K. K. Carroll, Diet and carcinogenesis: Historical perspective, this volume.Google Scholar
  65. 65.
    L. N. Kolonel, J. H. Hankin, A. M. Y. Nomura, et al., Studies of nutrients and their relationship to cancer in the multiethnic population of Hawaii, this volume.Google Scholar
  66. 66.
    J. R. Poole, S. H. Mudd, E. B. Conerly, et al., Homocystinuria due to cystathionine synthase deficiency: Studies of nitrogen balance and sulfur excretion, J. Clin. Invest. 55:1033 (1975).CrossRefGoogle Scholar
  67. 67.
    L. Belanger, P. Baril, M. Guertin, et al., Oncodevelopmental and hormonal regulation of alpha-fetoprotein gene expression, Adv. Enzyme Regul. 21:73 (1983).CrossRefGoogle Scholar
  68. 68.
    N. M. Kredich, M. S. Hershfield, and J. M. Johnston, Role of adenosine metabolism in transmethylation, in “Transmethylation,” E. Usdin, R. T. Borchardt, and C. R. Creveling, eds., Elsevier/ North Holland, New York (1979).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Lionel A. Poirier
    • 1
  1. 1.Nutrition and Metabolism Section, Laboratory of Chemical CarcinogenesisNCI-Frederick Cancer Research FacilityFrederickUSA

Personalised recommendations