Inversion of Surfactant-Oil-Brine Emulsified Systems: Generalized Mapping and Property Transitions

  • Philippe Jarry
  • Matilde Miñana-Pérez
  • Jean L. Salager


Provided that the system contains a reasonable amount of surfactant, the emulsion type essentially depends upon two factors: (1) the water/oil ratio (WOR), and (2) the physico-chemical formulation. The latter may involve such variables as surfactant type or HLB, oil nature (EACN), alcohol type and concentration, temperature, or any combination of these; it may be represented by a single generalized variable, i.e., the deviation from optimum formulation for three phase behavior. The locus of inversion is plotted on a formulation-WOR bidimensional diagram. Such a diagram shows that there exist two different inversion regimes. The first occurs for medium internal phase ratio systems, and is associated with optimum formulation. This kind of inversion is linked with a minimum in both emulsion stability and viscosity. The second kind occurs at high internal phase ratio and off-optimum formulation, and consists of two branches. In this second case of inversion, the stability exhibits a sudden change, while the viscosity passes through a maximum. The bidimensional formulation-WOR diagram is divided into six regions with different emulsion characteristics. Typical properties for each region and transition through boundaries are discussed.


Phase Behavior Optimum Formulation Electrolytical Conductivity Emulsion Type Surfactant Flooding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Becher, “Emulsions: Theory and Practice”, Reprint 2° Edition, R. Krieger Pub., New York (1977)Google Scholar
  2. 2.
    K. J. Lissant, Editor, “Emulsion and Emulsion Technology”, 2 Vol., Marcel Dekker, New York, 1974Google Scholar
  3. 3.
    J. L. Salager, L. Quintero, E. Ramos, and J. M. Andérez, J. Colloid Interface Sci., 77, 288 (1980)CrossRefGoogle Scholar
  4. 4.
    J. L. Salager, I. Loaiza-Maldonado, M. Miñana-Pérez, and F. Silva, J. Dispersion Sci . Technol ., 3 ,279 (1982)CrossRefGoogle Scholar
  5. 5.
    J. L. Salager, M. Miñana-Pérez, J. M. Andérez, J. L. Grosso, and C. I. Rojas, J. Dispersion Sci . Technol ., 4, 161 (1983)CrossRefGoogle Scholar
  6. 6.
    J. L. Salager, Ph .D. Dissertation, Uni v . of Texas at Austin, Texas, USA (1977)Google Scholar
  7. 7.
    J. L. Salager, Rev . Inst . Mexicano Petroleo, 11, 59 (1979)Google Scholar
  8. 8.
    J. L. Salager, J. Morgan, R. S. Schechter, W. H. Wade, and E. Vasquez, Soc . Petrol . Eng J., 19, 107 (1979)Google Scholar
  9. 9.
    M. Bourrel, J. L. Salager, R. S. Schechter, and W. H. Wade, J. Colloid Interface Sci ., 75, 451 (1980)CrossRefGoogle Scholar
  10. 10.
    K. Shinoda, J. Colloid Interface Sci ., 24, 4 (1967)CrossRefGoogle Scholar
  11. 11.
    J. L. Salager, and R. E. Antón, J. Dispersion Sci . Technol., 4, 253 (1983)CrossRefGoogle Scholar
  12. 12.
    R. E. Antón, and J. L. Salager, J. Dispersion Sci. Technol ., 6, 245 (1985)CrossRefGoogle Scholar
  13. 13.
    J. L. Salager, M. Miñana-Pérez, M. Pérez-Sanchéz, M. Ramirez de Gouveia, and C. Rojas, J. Dispersion Sci . Technol ., 4, 313 (1983)CrossRefGoogle Scholar
  14. 14.
    P. A. Winsor, “Solvent Properties of Amphiphilic Compounds”, Butterworths (1954)Google Scholar
  15. 15.
    A. Beerbower, and M. Hill, Am. Cosmetics Perfumery, 87, 85 (1972)Google Scholar
  16. 16.
    P. Jarry, “Propiedades de las Emulsiones cerca del lugar Geométrico de Inversión”, Techn . Report Nr FIRP 8402, School of Chem . Eng., Uni v. de los Andes, Mérida, Venezuela (1984)Google Scholar
  17. 17.
    M. Bourrel, A. Graciaa, R. S. Schechter, and W. H. Wade, J. Colloid Interface Sci ., 72, 161 (1979)CrossRefGoogle Scholar
  18. 18.
    J. E. Viniatieri, Soc. Petrol. Eng. J., 20, 402 (1980)Google Scholar
  19. 19.
    F. Milos, and D. T. Wasan, Colloids and Surfaces, 4, 91 (1982)CrossRefGoogle Scholar
  20. 20.
    F. Silva, MSc Thesis, School of Chem. Eng., Uni v. de Los Andes, Mérida, Venezuela (1984)Google Scholar
  21. 21.
    J. L. Salager, “Applications of Catastrophe Theory to Surfactant-Oil-Brine Equilibrated and Emulsified Systems”, these proceedings.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Philippe Jarry
    • 1
  • Matilde Miñana-Pérez
    • 1
  • Jean L. Salager
    • 1
  1. 1.Lab . FIRP, School of Chemical EngineeringUniversidad de Los AndesMéridaVenezuela

Personalised recommendations