Theory of Shape Transitions in Microemulsions

  • L. A. Turkevich
  • S. A. Safran
  • P. A. Pincus


We construct the mean-field phase diagram for microemulsion shapes in the dilute globule limit. The phenomenological bending energy of a globule is motivated by a microscopic model of the elasticity of the surfactant layer. We find spherical, lamellar and cylindrical phases to be stable. In the novel cylindrical phase, the cylinders are rigid for lengths smaller than a persistence length ξc; for lengths larger than ξc‚ the cylinders can behave like polymers in solution. As the persistence length and the degree of polymerization depend on the concentration of dispersed phase, these cylindrical microemulsions should exhibit interesting concentration dependence for the radius of gyration and viscosity.


Free Energy Disperse Phase Surfactant Molecule Persistence Length Cylinder Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a general survey see “surfactants in Solution”,ed. by K. Mittal and B. Lindman, Plenum Press, New York, 1984.Google Scholar
  2. 2.
    Y. Talmon and S. Prager, J. Chem. Phys. 69, 2984 (1978).CrossRefGoogle Scholar
  3. 3.
    J. Jouffroy, P. Levinson and P.G. De Gennes, J. Physique 43, 1241 (1982)CrossRefGoogle Scholar
  4. 3a.
    B. Widom, J. Chem. Phys. 81, 1030 (1984).CrossRefGoogle Scholar
  5. 4.
    P. G. De Gennes and C. Taupin, J. Phys. Chem. 86, 2294 (1982).CrossRefGoogle Scholar
  6. 5.
    L. Auvray, J.P. Cotton, R. Ober and C. Taupin, J. Physique 45, 713 (1984).CrossRefGoogle Scholar
  7. 6.
    W. Helfrich, Z. Naturforsch, 28, 6693 (1973).Google Scholar
  8. 7.
    S. A. Safran, J. Chem. Phys. 78, 2073 (1983) and Ref. 1, Vol. 3, p. 1781.CrossRefGoogle Scholar
  9. 8.
    S. A. Safran, L. A. Turkevich and P. A. Pincus, J. Physique Lett. 45, L69 (1984).CrossRefGoogle Scholar
  10. 9.
    P. J. Missel, N. A. Mazer, G. B. Benedek, C. Y. Young and M. C. Carey, J. Phys. Chem. 84, 1044 (1980).CrossRefGoogle Scholar
  11. 10.
    J. Appell, G. Porte and Y. Poggi, J. Colloid Interface Sci. 87, 492 (1982)CrossRefGoogle Scholar
  12. 10a.
    J. Appell, G. Porte and Y. Poggi,J. Physique Lett. 44, 689 (1983).CrossRefGoogle Scholar
  13. 11.
    G. Porte, J. Phys. Chem. 87, 3541 (1983).CrossRefGoogle Scholar
  14. 12.
    S. J. Candau, E. Hirsch and R. Zana, J. Physique (in press), and E. Hirsch, S. J. Candau and R. Zana, these proceedings.Google Scholar
  15. 13.
    S. Marcelja, Biochim. Biophys. Acta 367, 165 (1974).CrossRefGoogle Scholar
  16. 14.
    A. G. Petrov and A. Derzhanski, J. Physique Colloq. 37, C3–155 (1976).Google Scholar
  17. 15.
    A. G. Petrov, M. D. Mitov and A. Derzhanski, Phys. Letts. 65A, 374 (1978).CrossRefGoogle Scholar
  18. 16.
    W. Helfrich, Z. Naturforsch. 28C, 693 (1973)Google Scholar
  19. 16a.
    F. C. Frank, Discuss. Faraday Soc. 25, 19 (1958).CrossRefGoogle Scholar
  20. 17.
    L. A. Turkevich and S. A. Safran, to be published.Google Scholar
  21. 18.
    A factor 9/2 was inadvertently dropped in our previous calculation.Google Scholar
  22. 19.
    S. A. Safran and L. A. Turkevich, Phys. Rev. Lett. 50, 1930 (1983)CrossRefGoogle Scholar
  23. 19a.
    S.A. Safran, L.A. Turkevich, and J.S. Huang, these proceedings.Google Scholar
  24. 20.
    Due to the change in the endcap energy18 the cylinders should be longer than our previous estimates.Google Scholar
  25. 21.
    J. N. Israelachvili, D. J. Mitchell and B. W. Ninham, J. Chem. Soc. Faraday Trans. 2, 72, 1525 (1976)CrossRefGoogle Scholar
  26. 21a.
    W. Gelbart, A. Ben-Shaul, W. McMullen and A. Masters, J. Chem. Phys. 88, 8861 (1984).Google Scholar
  27. 22.
    S. Ikeda, J. Phys. Chem. 88, 2144 (1984).CrossRefGoogle Scholar
  28. 23.
    J. C. Wheeler and P. Pfeuty, Phys. Rev. A 24, 2050, (1981).CrossRefGoogle Scholar
  29. 24.
    For a treatment of such dynamical fluctuations, see S. Ljunggren and J. C. Eriksson, J. Chem. Soc., Faraday Trans. 2, 80, 489 (1984).CrossRefGoogle Scholar
  30. 25.
    L. Auvray, J. Physique (in press).Google Scholar
  31. 26.
    L. Onsager, Ann. N.Y. Acad. Sci. 51 , 627 (1949)CrossRefGoogle Scholar
  32. 26a.
    D. W. Schaefer, J.-F. Joanny and P. Pincus, MacromoTecules 13 , 1280 (1980).CrossRefGoogle Scholar
  33. 27.
    S. F. Edwards, Proc. Phys. Soc. 92, 9 (1967).CrossRefGoogle Scholar
  34. 28.
    G. Porte, J. Marignan, J. Appell, Y. Poggi and G. Maret, this Symposium Paper No. 20C1Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • L. A. Turkevich
    • 1
  • S. A. Safran
    • 2
  • P. A. Pincus
    • 2
  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA
  2. 2.Corporate Research Science LaboratoriesExxon Research and Engineering CompanyAnnandaleUSA

Personalised recommendations