Skip to main content

Physico-Chemical Study of Water/Methylene Chloride Microemulsions: Effect of Alcohol Cosurfactant

  • Chapter
Book cover Surfactants in Solution

Abstract

The present work deals with the study of water-methylene chloride microemulsions stabilized with an active blend composed of sodium p-octylbenzenesulphonate as surfactant and a series of linear alcohols from propanol to heptanol as cosurfactant. The oil was chosen because of its ability to solubilise water-insoluble compounds which offers potential use in organic electrochemistry. The pseudoternary mass phase diagrams were determined at room temperature for a cosurfactant to surfactant mass ratio equal to 2. They display an isotropic phase area whose shape and size depend greatly on the alcohol and seem to be related, to a great extent, to the capacity of the microemulsions for solubilizing water. Viscosity and conductivity measurements show that the fluidity of the microstructures decreases when the alcohol chain length increases with an abrupt change from pentanol to hexanol. An attempt to better understand the structure and dynamics of the microemulsions has been made by electrochemical measurement of the diffusion coefficients of two electroactive probes: an oil-soluble one (N-methyl phenothiazine) and a water-soluble one (hydroquinone). The measured diffusion coefficients are comparable in their values and their variations to the expected self-diffusion coefficients of methylene chloride and water respectively, and thus provide valuable information about the composition of the continuous and disperse phases. Our results demonstrate once again the relation between the structure of the microemulsions and the nature of the alcohol cosurfactant. The comparison between the behavior of our water-CH2Cl2 system and the well-known waterdodecane system seems to confirm that the influence of the alcohol chain length is invariant with respect to the oil type. More significant features relating the microemulsion structure to the nature of the cosurfactant would be based on the role of the cosurfactant on the fluidity of the structure; it would depend on the mutual solubility of the compounds, the alcohol/surfactant molecular ratio which decreases from propanol to heptanol and a steric and concentration effect of the alcohol on the interphase curvature and flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. B. Gogarty, J. Pet. Tech., 28, 93 (1976).

    CAS  Google Scholar 

  2. V. K. Bansal and D. O. Shah in “Micellization, Solubilization and Microemulsions”, K. L. Mittal, Editor, Vol. 1, Plenum Press, New York, 1977.

    Google Scholar 

  3. R. E. Barden and S. L. Holt in “Solution Chemistry of Surfactants”, K. L. Mittal, Editor, Vol. 2, p. 707, Plenum Pres, New York, 1979.

    Google Scholar 

  4. R. A. Mackay, Adv. Colloid Interface Sci., 15, 131 (1981)

    Article  CAS  Google Scholar 

  5. R. A. Mackay, in “Microemulsions”, I. D. Robb, Editor, p. 207, Plenum Press, New York, 1982.

    Google Scholar 

  6. C. De Bourayne, M. T. Maurette, E. Oliveros, M. Riviere, A. De Savignac and A. Lattes, J. Chim. Phys., 79, 139 (1982).

    Google Scholar 

  7. A. Gonzales, J. Murphy and S. L. Holt, in “Inorganic Reactions in Organized Media”, S. L. Holt, Editor, ACS Symposium Series No. 177, Washington, 1982.

    Google Scholar 

  8. G. Mathis, D.Sc. Thesis, 1982, Nancy, France.

    Google Scholar 

  9. A. Xenakis and C. Tondre, J. Phys. Chem., 87, 4737 (1983).

    Article  CAS  Google Scholar 

  10. P. Fourre, D. Bauer, and J. Lemerle, Anal. Chem, 55, 662 (1983).

    Article  CAS  Google Scholar 

  11. A. Berthod and J. Georges, J. Chim. Phys., 80, 245 (1983).

    CAS  Google Scholar 

  12. L. E. Scriven, Nature (London), 263, 123 (1976).

    Article  CAS  Google Scholar 

  13. B. Lindman, P. Stilbs and M. E. Moseley, J. Colloid Interface Sci., 83, 569 (1981).

    Article  Google Scholar 

  14. B. Lindman, N. Kamenka, T. M. Kathopoulis, B. Brun and P. G. Nilsson, J Phys. Chem., 84, 2485 (1980).

    Article  CAS  Google Scholar 

  15. E. W. Kaler and S. Prager, J. Colloid Interface Sci., 86, 359 (1982).

    Article  CAS  Google Scholar 

  16. J. Heil, M. Clausse, J. Peyrelasse and C. Boned, Colloid Polymer Sci., 260, 93 (1982).

    Article  CAS  Google Scholar 

  17. C. Boned, M. Clausse, B. Lagourette, J. Peyrelasse, V. E. R. McClean and R. J. Sheppard, J. Phys. Chem., 84, 1520 (1980).

    Article  CAS  Google Scholar 

  18. M.Clausse, J. Heil, J. Peyrelasse and C. Boned, J. Colloid Interface Sci., 87, 584 (1982).

    Article  Google Scholar 

  19. V. K. Banasal, D.O. Shah and J. P. O’Connell, J. Colloid Interface Sci., 75, 462 (1980).

    Article  Google Scholar 

  20. P. Stilbs, K. Rapacki and B. Lindman, J. Colloid Interface Sci., 95, 583 (1983).

    Article  CAS  Google Scholar 

  21. H. Stephen and T. Stephen, “Solubility of Inorganic and Organic Compounds”, Vol. 1. Part 1, Pergamon Press, 1983.

    Google Scholar 

  22. J.C. Russel and D. G. Whitten, J. Am. Chem. Soc., 104, 5937 (1982).

    Article  Google Scholar 

  23. E. W. Kaler, K. E. Bennett, H. T. Davis and L. E. Scriven, J. Phys. Chem., 79, 5673 (1983).

    Article  CAS  Google Scholar 

  24. M. Dvolaitzki, M. Lagues, J. P. Le Pesant, R. Ober, C. Sauterey and C. Taupin, J. Phys. Chem., 84, 1532 (1980).

    Article  Google Scholar 

  25. P. Stilbs and B Lindman, J. Colloid Interface Sci., 99, 290 (1984).

    Article  CAS  Google Scholar 

  26. P. Stilbs, J. Colloid Interface Sci., 87, 385 (1982).

    Article  CAS  Google Scholar 

  27. J. Georges and S. Desmettre, Electrochim. Acta, 29, 521 (1984).

    Article  CAS  Google Scholar 

  28. A. M. Bellocq, J. Biais, B. Clin, P. Lalanne and B. Lemanceau, J. Colloid Interface Sci., 70 ,524 (1979).

    Article  CAS  Google Scholar 

  29. P. G. De Gennes and C. Taupin, J. Phys. Chem, 86, 2294 (1982).

    Article  Google Scholar 

  30. D. J. Mitchell and B. W. Ninham, J. Chem. Soc. Faraday Trans. II, 77, 601 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Georges, J., Berthod, A., Arnaud, N. (1986). Physico-Chemical Study of Water/Methylene Chloride Microemulsions: Effect of Alcohol Cosurfactant. In: Mittal, K.L., Bothorel, P. (eds) Surfactants in Solution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1833-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1833-0_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9024-7

  • Online ISBN: 978-1-4613-1833-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics