Ellipsometry in Microemulsions

  • L. Tenebre
  • G. Haouche
  • B. Brun


Ellipsometeric measurements have been performed to study the structure of the interfaces separating a microemulsion phase from its adjoining excess phases, these systems being usually referred to as a Winsor I, II and III. The surfactant (dodecylbetaine) used is a zwitterionic molecule. The most important results concern the diphasic systems. It is shown that the basic structure of their interfaces could be a mixed monolayer of surfactant and cosurfactant molecules. In Winsor I, an interfacial phase transition occurs, long before the Winsor III boundary; a monolayer of microemulsion droplets assembles in close association with the monolayer, retained at the interface by action of the forces invqlved in the D.L.V.O. theory. This layer is densely packed at the beginning of the Winsor III region, and the structure so formed disappears gradually inside this domain. In Winsor II such a transition is not detected. Either it does not occur, or it is situated very close to the Winsor III boundary where there are large fluctuations.


Interfacial Tension Colloid Interface Aliphatic Chain Mixed Monolayer Thin Interlayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. A. Miller, R. Hwan, W. Benton and T. Fort, Jr., J. Colloid Interface Sci., 61, 554 (1977).CrossRefGoogle Scholar
  2. 2.
    C. Strachan, Proc. Camb. Phil. Soc., 29, 116 (1933).CrossRefGoogle Scholar
  3. 3.
    L. Tenebre, J. Phys. Colloque, C5. 38, 123 (1977).Google Scholar
  4. 4.
    D. Beaglehole, Physica, 112B, 320 (1982).Google Scholar
  5. 5.
    C. A. Miller and L. E. Scriven, J. Colloid Interface Sci., 46, 477 (1974),CrossRefGoogle Scholar
  6. 6.
    P. M. Bisch, D. Van Lamsweer de-Gallez and A. Sanfeld, J. Colloid Interface Sci., 71, 501 (1979).CrossRefGoogle Scholar
  7. 7.
    G. Haouche, These 1984, Montpellier, France.Google Scholar
  8. 8.
    E. Ruckenstein, Annals N.Y. Acad. Sci., Vol. 404, p. 224, R. Pheffer, Editor, New York, 1983.CrossRefGoogle Scholar
  9. 9.
    A. Fouchelon, D. Chatenay, J. Meunier, and D. Langevin, J. Colloid Interface Sci., 82, 418 (1981).CrossRefGoogle Scholar
  10. 10.
    A. M. Bellocq, D. Boardon, B. Lemanceau and G. Fourche, J. Colloid Interface Sci., 89, 427 (1982).CrossRefGoogle Scholar
  11. 11.
    J. Biais, P. Bothorel, B. Clin and P. Laianne, J. Dispersion Sci. Technol., 2 ,67 (1981).CrossRefGoogle Scholar
  12. 12.
    C. Clement and P. Bothorel, J. Chim. Phys., p. 1262 (1964).Google Scholar
  13. 13.
    F. Billoudet and M. Dupeyrat, J. Chim. Phys., 78, 635 (1981).Google Scholar
  14. 14.
    A. M. Cazabat, D. Langevin and A. Pouchelon, J. Colloid Interface Sci., 73, 1 (1980).CrossRefGoogle Scholar
  15. 15.
    A. M. Cazabat, D. Langevin, J. Meunier and A. Pouchelon, J. Phys. Lettres, 43, 89 (1982).CrossRefGoogle Scholar
  16. 16.
    V. N. Beshkov, B. P. Radoev and I. B. Ivanov, J. Multiphase Flow, 4, 563 (1978).CrossRefGoogle Scholar
  17. 17.
    L. Arminski, S. Weinbaum and S. Chien, J. Colloid Interface Sci., 90, 390 (1982).CrossRefGoogle Scholar
  18. 18.
    V. A. Pargesian, J. Theoret. Biol., 15 ,70 (1967).CrossRefGoogle Scholar
  19. 19.
    D. M. Leneveu, R. P. Rand and V. A. Pargesian, Biophys. J., 18, 208 (1977).CrossRefGoogle Scholar
  20. 20.
    R. Pottel, U. Kaatze and St.-Muller, Ber Bunsenges. Phys. Chem., 82, 1086 (1978).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • L. Tenebre
    • 1
  • G. Haouche
    • 1
  • B. Brun
    • 1
  1. 1.Laboratoire Associe au C.N.R.S. No. 330Physico-Chimie des Systemes PolyphasesMontpellier-CedexFrance

Personalised recommendations