Neutron Small Angle Scattering Studies of Microemulsions Showing Critical Behaviour: Structure of the Winsor III Phase

  • J. Tabony
  • A. de Geyer


Neutron small angle scattering has been used to study two microemulsions which show a critical behavior. The systems differ in that one is of the dilute oil-in-water type and monophasic, whilst the other is concentrated and passes through Winsor I to Winsor III to Winsor II phase transitions. Experiments on the dilute microemulsion show that the droplet structure is retained as the critical region is crossed and that the critical scattering arises from fluctuations in the local concentration of these droplets. In the concentrated system, critical scattering is observed close to the Winsor I to Winsor III and to the Winsor II to Winsor III phase transitions. The structure of the Winsor I and Winsor II phases is confirmed as being, respectively, dispersions of oil droplets in water, and water droplets in oil. For the Winsor III phase, where the volume fractions of oil and water are comparable, experimental results are presented which provide strong evidence in favour of a cubic oil and water inter-contiguous structure.


Water Zone Surfactant Aggregate Microemulsion Droplet Critical Fluctuation Distance Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Corti and V. Degiorgio, Phys. Rev. Lett. 45, 1045 (1970)CrossRefGoogle Scholar
  2. 1a.
    M Corti, C. Minevo and Degiorgio, J. Phys. Chem., 88, 309 (1984).CrossRefGoogle Scholar
  3. 2.
    D. J. Cebula and R. H. Ottewill, Colloid Polymer Sci. 260, 1118 (1982).CrossRefGoogle Scholar
  4. 3.
    R. Triolo, L. J. Magid, J. S. Johnson and H. R. Child, J. Phys. Chem., 86, 3689 (1982).CrossRefGoogle Scholar
  5. 4.
    M. Zulauf, J. P. Rosenbuch, J. Phys. Chem. 87, 856 (1983).CrossRefGoogle Scholar
  6. 5.
    C. Toprakcioglu, J. Dore, B. Robinson, A. Howe and P. Chieux J. Chem. Soc. Faraday. Tans. I, 80, 413 (1984).CrossRefGoogle Scholar
  7. 6.
    J. Huang and M. Kim, Phys. Rev. Lett. 47, 1462 (1981).CrossRefGoogle Scholar
  8. 7.
    G. Fourche, A.M. Bellocq and S. Brunetti, J. Colloin Interface Sci. 88, 302, 1982).CrossRefGoogle Scholar
  9. 8.
    D. F. Nicoli, F. de Buzzaccarini, L.S. Romsted and C.A. Bunton Chem. Phys. Lett., 80 422 (1981)CrossRefGoogle Scholar
  10. 8a.
    R. Dorshow, F. de Buzzaccarini,C.A. Bunton, and D.F. Nicoli, Phys. Rev. Lett, 47 , 1336 (1981).CrossRefGoogle Scholar
  11. 9.
    A.M. Cazabat, D. Langevin, J. Meunier and A. Pouchelon, J. Phys. Lett. 43, L 89 (1982).Google Scholar
  12. 10.
    N. Mazer, G. Benedek and M. Carey, J. Phys. Chem., 80, 1075 (19 76).CrossRefGoogle Scholar
  13. 11.
    J. Tabony, M. Drifford and A. de Geyer, Chem. Phys. Lett., 96, 119, (1983).CrossRefGoogle Scholar
  14. 12.
    A. de Geyer and J. Tabony, Chem. Phys. Lett., 113, 83 (1985).CrossRefGoogle Scholar
  15. 13.
    E. Hirsch, F. Debeauvais, F. Candau, J. Lang and R. Zana, J. Phys., 45, 257 1984).CrossRefGoogle Scholar
  16. 14.
    M. Clausse, P. Peyrelasse, J. Heil, C. Boned, and B. Lagourette, Nature, 293, 636 (1981).CrossRefGoogle Scholar
  17. 15.
    B. Lindman, N. Kamenka, T.M. Kathopoulis and B. Brun, P.G. Nilsson, J. Phys. Chem., 84, 2485 (1980).CrossRefGoogle Scholar
  18. 16.
    F. Larche, J. Rouviere, P. Delord, B. Brun, and J.L. Dussossoy, J. Phys. Lett. 41, 437 (1980).CrossRefGoogle Scholar
  19. 17.
    J. S. Higgins, J. Appl . Cryst. 11, 346 (19 78).CrossRefGoogle Scholar
  20. 18.
    B. Jacrot, Rep. Prog. Phys. 39, 911 (1976).CrossRefGoogle Scholar
  21. 19.
    H.B. Stuhrmann and A. Miller, J. Appl. Cryst. 11, 325 (19 78).CrossRefGoogle Scholar
  22. 20.
    A. Puchelon, J. Meunier, D. Langevin, D. Chatenay, and A.M. Cazabat, Chem. Phys. Lett., 76, 277 (1980).CrossRefGoogle Scholar
  23. 21.
    A. Pouchelon. D.I. Thesis at the University of Paris VI, (1982).Google Scholar
  24. 22.
    P.A. Winsor, “Solvent Properties of Amphiphilic Compounds”, Butterworths, London (19 54).Google Scholar
  25. 23.
    J. Tabony, Mol. Phys. 51, 975 (1984).CrossRefGoogle Scholar
  26. 24.
    J. Jouffroy, P. Levinson and P.G. De Gennes, J. de Physique, 43, 1241 (1982).CrossRefGoogle Scholar
  27. 25.
    D.J. Cebula, D.Y. Nyers and R.H. Ottewill, Colloid Polymer, 260, 96 (1982).CrossRefGoogle Scholar
  28. 26.
    D.J. Cebula, R.H. Ottewill and J. Ralston, J. Chem. Soc. Faraday Trans. I, 77, 2585 (1981).CrossRefGoogle Scholar
  29. 27.
    O. Glatter and O. Kratky, “Small Angle X-ray Scattering”, Academic Press, New York (1982).Google Scholar
  30. 28.
    J.B. Hayter and J. Penfold, Mol. Phys., 42, 109 (1981).CrossRefGoogle Scholar
  31. 29.
    L.E. Scriven, Nature, 263, 12 3 (19 76).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. Tabony
    • 1
  • A. de Geyer
    • 1
  1. 1.CEA-IRDI-DESICP, Department de Physico-ChimieCentre d’Etudes Nucleaires de SaclayGif Sur Yvette CedexFrance

Personalised recommendations