Positronium Diffusivity- and Lifetime Parameters and the Micellar Structure in Aqueous (D2O) SDS Solutions

  • Sz. Vass
  • Zs. Kajcsos
  • B. Molnar


A new method based on a microscopic orthopositronium (o-Ps) diffusion model is presented for the evaluation of positron annihilation spectra obtained from micellar solutions. In contrast with the conventional models, the o-Ps lifetime density function is non-exponential and depends on the following parameters: the formation- an annihilation probabilities of o-Ps in the solvent and in the micellar pseudophase, the diffusion coefficients of o-Ps and the micelles in the solvent, as well as the structural data of the micellar solution (surfactant concentration, micellar aggregation number and radius). Orthopositronium diffusion coefficients are determined by fitting this lifetime density function to positron annihilation spectra obtained from 1 mol/dm3 solution of sodium dodecylsulphate (SDS) in D2O at different temperatures. The activation energy of the o-Ps diffusion in D2O is obtained from the Arrhenius plot as Ea∼O.7 eV.


Surfactant Concentration Micellar Solution Positron Lifetime Lifetime Spectrum Positron Lifetime Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Berko and H.N. Pendleton, in “Annual Review of Nuclear and Particle Science” J.D. Jackson,Editor, Vol.30, Annual Reviews Inc., Palo Alto, CA., 1980.Google Scholar
  2. 2.
    Y.C. Jean and H.J. Ache, J.Am.Chem.Soc. 99, 7504 (1977).CrossRefGoogle Scholar
  3. 3.
    Y.C. Jean and H.J. Ache, J.Am.Chem.Soc. 100, 984 (1978).CrossRefGoogle Scholar
  4. 4.
    Sz. Vass, Zs. Kajcsos, B. Molnar, L. Marczis and Ch. Stergiopoulos, Nucl.Instrum.Meth. 199, 285 (1982).CrossRefGoogle Scholar
  5. 5.
    Sz. Vass, Zs. Kajcsos, B. Molnar and Ch. Stergiopoulos, in “Proc.of 5th Symp.on Radiation Chemistry, Siofok, Hungary, 1982” p.167. Publishing House of the Hungarian Academy of Sciences, Budapest, 1983.Google Scholar
  6. 6.
    H.J. Ache, in “Positron Annihilation” P.C. Coleman, S.C. Sharma and L.M. Diana,Editors, (Proc.of 6th Int.Conf.on Positron Annihilation, The University of Texas at Arlington, April 3-7, 1982) p.773. North Holland, Amsterdam, 1983.Google Scholar
  7. 7.
    J.K. Nash, J.D. McNutt, S.C. Sharma, L.M. Diana, S.R.S. Kafle and P.G. Coleman, ibid., p.742.Google Scholar
  8. 8.
    J. Serrano, P. Reynoso, B. Djermouni, L.A. Fucugauchi, ibid., p.824.Google Scholar
  9. 9.
    R. Lopez, 0. Olea and L.A. Fucugauchi, ibid., p.827.Google Scholar
  10. 10.
    A.Z. Varisov, Yu.N. Kuznetsov, E.P. Prokop’ev and A.I. Filipev, Usp.Khim. 50, 1892 (1981), in Russian.Google Scholar
  11. 11.
    T. Gilanyi, E. Wolfram and Ch. Stergiopuolos, Colloid Polym.Sci. 254, 1018 (1976).CrossRefGoogle Scholar
  12. 12.
    J. Tamas, personal communication, 1982.Google Scholar
  13. 13.
    Z. Decsy, personal communication, 1982.Google Scholar
  14. 14.
    P. Kirkegaard and M. Eldrup, Comp.Phys.Comm. 3, 240 (1972).CrossRefGoogle Scholar
  15. 15.
    P. Kirkegaard and M. Eldrup, Comp.Phys.Comm. 7, 401 (1974).CrossRefGoogle Scholar
  16. 16.
    P. Gray, C.F. Cook, G.P. Sturm, J.Chem.Phys. 48, 1145 (1968).CrossRefGoogle Scholar
  17. 17.
    Zs. Kajcsos, I. Dezsi and D. Horvath, Appl.Phys. 5 ,53 (1974).CrossRefGoogle Scholar
  18. 18.
    Gy. Jakli, personal communication, 1984.Google Scholar
  19. 19.
    C. Tanford, “The Hydrophobic Effect: Formation of Micelles and Biological Membranes” John Wiley, New York, 1973.Google Scholar
  20. 20.
    F. James and M. Roos, Comp.Phys.Comm. 10, 343 (1975).CrossRefGoogle Scholar
  21. 21.
    K.J. Mysels and L.H. Princen, J.Phys.Chem. 63, 1696 (1959).CrossRefGoogle Scholar
  22. 22.
    D. Stigter, J.Colloid Interface Sci. 47, 473 (1974).CrossRefGoogle Scholar
  23. 23.
    J.M. Corkill, J.F. Goodman and T. Walker, Trans.Faraday Soc. 63, 768 (1957).CrossRefGoogle Scholar
  24. 24.
    K. Shinoda and T. Soda, J.Phys.Chem. 67 ,2072 (1963).CrossRefGoogle Scholar
  25. 25.
    K. Kakiuchi, K. Hattori and T. Isemura, Bull.Chem.Soc.Japan 36, 1250 (1963).CrossRefGoogle Scholar
  26. 26.
    G.M. Musbally, G. Perron and J.E. Desnoyers, J.Colloid Interface Sci. 48, 494 (1974).CrossRefGoogle Scholar
  27. 27.
    T.S. Brun, H. Høiland and E. Vikingstad, J.Colloid Interface Sci. 63, 89 (1978).CrossRefGoogle Scholar
  28. 28.
    D.A. Doughty, J.Phys.Chem. 83, 2621 (1979).CrossRefGoogle Scholar
  29. 29.
    N.A. Mazer, G.B. Benedek and M.C. Carey, J.Phys.Chem. 80, 1075 (1976).CrossRefGoogle Scholar
  30. 30.
    M. Corti and V. Degiorgio, J.Phys.Chem. 85, 711 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Sz. Vass
    • 1
  • Zs. Kajcsos
    • 1
  • B. Molnar
    • 1
  1. 1.Central Research Institute for Physics of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations