Skip to main content

Industrial Applications of Mössbauer Spectroscopy to Microcrystals

  • Chapter
Industrial Applications of the Mössbauer Effect

Abstract

Microcrystalline materials with crystallite dimensions in the ränge 5–1OOnm are very common on the earth. For example, sediments often contain microcrystals of clay minerals, iron oxides and iron oxyhydroxides. Moreover, rapidly cooled lavas may also contain microcrystalline minerals. Even in biological samples microcrystals are common. The iron storage proteins of animals contain microcrystals of iron oxyhydroxides. Because clays are commonly used for manufacturing ceramics and building materials, such samples may also be microcrystalline. Fly ash, which is another example of a microcrystalline material is used, for example, as an additive to concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Mørup, J. A. Dumesic and H. Topsøe, in Applications of Mössbauer Spectroscopy, Vol. II, ed. R. L. Cohen ( Academic Press, New York ), p. 1 (1980).

    Google Scholar 

  2. J. L. Dormann, Rev. Phys. Appl. 16, 275 (1981).

    Google Scholar 

  3. S. Mørup, H. Topsøe and B. S. Clausen, Phys. Scripta 25, 713 (1982).

    Article  Google Scholar 

  4. A. H. Morrish and K. Haneda, J. Magn. Magn. Mat. 35, 105 (1983).

    Article  Google Scholar 

  5. W. F. Brown, Jr., J. Appl. Phys. 30, suppl. 130S (1959).

    Google Scholar 

  6. W. F. Brown, Jr., J. Appl. Phys. 34, 1319 (1963).

    Article  Google Scholar 

  7. W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963).

    Article  Google Scholar 

  8. A. Aharoni, Phys. Rev. 135, A447 (1964).

    Article  Google Scholar 

  9. W. Kündig, H. Bommel, G. Constabaris, and R. H. Lindquist, Phys. Rev. 142, 327 (1966).

    Article  Google Scholar 

  10. S. Mørup and H. Topsøe, Appl. Phys. 11, 63 (1976).

    Article  Google Scholar 

  11. S. Mørup, H. Topsøe, and J. Lipka, J. de Phys. Colloq. 37, C6–287 (1976).

    Google Scholar 

  12. S. Mørup, J. Magn. Magn. Mat. 37, 39 (1983).

    Article  Google Scholar 

  13. J. E. Knudsen and S. Mørup, J. de Phys. Colloq. 41, Cl–155 (1980).

    Google Scholar 

  14. S. Mørup and H. Topsøe, Proc. Internat. Conf. Mössbauer Spectroscopy, Bucharest, Romania (Edited by D. Barb and D. Tarina), p. 229 (1977).

    Google Scholar 

  15. S. W. Charles and J. Popplewell, in Ferromagnetic Materials, Vol. 2 (Ed. E. P. Wohlfarth), North Holland, p. 509 (1980).

    Google Scholar 

  16. S. Mørup, J. Magn. Magn. Mat. 39, 45 (1983).

    Article  Google Scholar 

  17. B. S. Clausen, S. Mørup, P. Nielsen, N. Thrane, and H. Topsøe, J. Phys. E., Sei. Instrum. 12, 439 (1979).

    Article  Google Scholar 

  18. K. Krop, J. Korecki, J. Zukrowski, and W. Laras, Int. J. Magn. 6, 19 (1974).

    Google Scholar 

  19. L. Neel, J. Phys. Radium 15, 225 (1954).

    Article  Google Scholar 

  20. T. Shinjo, J. de Phys. Colloq. 40, C2–63 (1979).

    Google Scholar 

  21. H. Topsøe, J. A. Dumesic, and S. Mørup, in Applications of Mössbauer Spectroscopy (Edited by R. L. Cohen), Vol. II, p. 55 Academic Press, New York (1980).

    Google Scholar 

  22. J. C. Walker, Proceedings of the Indian National Science Academy, International Conference on the Applications of the Mössbauer Effect, Jaipur, India, 1981, (New Delhi, 1982 ). p. 21.

    Google Scholar 

  23. R. Kaiser and G. J. Miskolczy, J. Appl. Phys. 41, 1064 (1970).

    Article  Google Scholar 

  24. A. E. Berkowitz, J. A. Lahut, I. S. Jacobs, L. M. Levinson, and D. W. Forester, Phys. Rev. Lett. 34, 594 (1975).

    Article  Google Scholar 

  25. A. H. Morrish and K. Haneda, J. Appl. Phys. 52, 2496 (1981).

    Article  Google Scholar 

  26. J. M. D. Coey, Phys. Rev. Lett. 27, 1140 (1971).

    Article  Google Scholar 

  27. A. H. Morrish, K. Haneda, and P. J. Schurer, J. de Phys. Colloq. 37, C6–301 (1976).

    Google Scholar 

  28. B. S. Clausen, S. Mørup and H. Topsjöe, Surface Sei. 106, 438 (1981).

    Article  Google Scholar 

  29. B. S. Clausen, H. Topsøe and S. Mørup, International Conference on the Applications of the Mössbauer Effect, Jaipur, India (Indian National Science Academy, New Delhi), p. 423 (1982).

    Google Scholar 

  30. A. J. Freeman, C. S. Wang, H. Krakauer, and M. Pasternak, J. de Physique Colloq. 41, Cl–39 (1980).

    Google Scholar 

  31. C. S. Wang and A. J. Freeman, J. Mag.Magn. Mater. 15–18, 869 (1980).

    Google Scholar 

  32. R. Birringer, H. Gleiter, H.-P. Klein, and P. Marquard, Phys. Lett. 202A, 365 (1984).

    Google Scholar 

  33. I. Tamura and M. Hayashi, Surface Sei. 146, 501 (1984).

    Article  Google Scholar 

  34. P. H. Christensen, S. Mørup, B. S. Clausen, and H. Topsøe, Proc. 8th Int. Congress on Catalysis, Berlin (West), Vol. II, (Verlag Chemie), p. 545 (1984).

    Google Scholar 

  35. P. H. Christensen, S. Mørup, B. S. Clausen, and H. Topsj6e, Proceedings of the International Conference on the Applications of the Mössbauer Effect, Alma-Ata, USSR, in press (1983).

    Google Scholar 

  36. I. S. Jacobs and C. P. Bean, in Magnetism (Eds., G. T. Rado and H. Suhl ), Vol. III, Academic Press, New York (1963).

    Google Scholar 

  37. A. M. van der Kraan, Phys. Status Solidi (a) 18, 215 (1973).

    Article  Google Scholar 

  38. D. Schroeer and R. C. Nininger, Phys. Rev. Lett. 19, 632 (1967).

    Article  Google Scholar 

  39. R. C. Nininger and D. Schroeer, J. Phys. Chem. Solids 39, 137 (1978).

    Article  Google Scholar 

  40. H. Topsøe and S. Mørup, Proc. Int. Conf. Mössbauer Spectroscopy, Krakow, Poland, (Eds., A. Z. Hrynkiewicz and J. A. Sawicki), Vol. 1, p. 321 (1975).

    Google Scholar 

  41. S. Mørup and H. Topsøe, J. Magn. Magn. Mat. 31–34, 953 (1983).

    Google Scholar 

  42. S. Mørup, M. B. Madsen, J. Franck, J. Villadsen, and C. J. W. Koch, J. Magn. Magn. Mat. 40, 163 (1983).

    Article  Google Scholar 

  43. M. B. Madsen, S. Mjrfrup, J. Franck, C. Wivel, J. Villadsen, and C. J. W. Koch, Proc. Internat. Conf. Mössbauer Effect, Alma Ata, USSR, in press (1983).

    Google Scholar 

  44. C. Wivel and S. Mørup, J. Phys. E., Sci. Instrum. 14, 605 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Mørup, S. (1986). Industrial Applications of Mössbauer Spectroscopy to Microcrystals. In: Long, G.J., Stevens, J.G. (eds) Industrial Applications of the Mössbauer Effect. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1827-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1827-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9021-6

  • Online ISBN: 978-1-4613-1827-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics