Mössbauer Effect Characterization of Silica Supported Rhodium-Iron Catalysts

  • Yoshitaka Minai
  • Takeshi Tominaga
  • Takakazu Fukushima
  • Masaru Ichikawa

Abstract

Silica supported rhodium-iron catalysts were characterized with iron-57 Mössbauer spectra indicated that iron in the catalysts existed as iron(0) in the rhodium-iron alloy and iron(III) stabilized through the metal-support interaction. A part of iron(III) combined the rhodium-iron alloy and the silica as an anchor. The iron(III) to iron(0) ratio and Mössbauer effect parameters were found to depend on the iron to rhodium ratio in the catalysts. Their dependences correspond to the change of the catalytic properties of rhodium-iron catalysts with the iron content. A schematic model for the surface structure of the rhodium-iron catalysts is proposed. The Mössbauer spectra of rhodium-iron catalysts with various metal loading supported this model.

Keywords

Titanium Zirconium Hydrocarbon Carbon Monoxide Expense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ichikawa, Chemtech., 680 (1982).Google Scholar
  2. 2.
    M. M. Bhasin, W. J. Bartley, P. C. Ellgen, and T. P. Wilson, J. Catal. 54, 120 (1978)CrossRefGoogle Scholar
  3. T. Fukushima, Y. Ishii, Y. Onda, and M. Ichikawa, J. Chem. Soc., Chem. Commun, 1752 (1985).Google Scholar
  4. 3.
    M. Ichikawa, K. Sekizawa, K. Shikakura, and M. Kawai, J. Mol. Catal. 11, 167 (1982).Google Scholar
  5. 4.
    J. A. Dumesic, J. Phys. (Paris), Colloq., C6, 233 (1976).Google Scholar
  6. 5.
    R. L. Garten, in “Mössbauer Effect Methodology”, Vol. 10, I. J. Gruverman and C. W. Seidel, eds., Plenum Press, New York (1976).Google Scholar
  7. 6.
    L. Guczi, Catal. Rev. Sei. Eng. 23, 329 (1981).Google Scholar
  8. 7.
    M. L. Good, M. D. Patil, J. T. Donner, and C. P. Madhusudahan, in “Mössbauer Spectroscopy and Its Chemical Applications”, J. G. Stevens and G. K. Shenoy, eds., Am. Chem. Soc., Washington, D.C. (1981).Google Scholar
  9. 8.
    Y. Minai, T. Fukushima, M. Ichikawa, and T. Tominaga, J. Radioanal. Nucl. Chem. Letters 87, 189 (1984).CrossRefGoogle Scholar
  10. 9.
    The program had been written originally in ALGOL by B. J. Duke and T. C. Gibb, J. Chem. Soc. (A), 1478 (1967), and it was rewritten by M. Takeda in Fortran.Google Scholar
  11. 10.
    J. W. Niemantsverdriet, A. M. van der Kraan, J. J. van Loef, and W. N. Delgass, J. Phys. Chem. 87, 1292 (1983).CrossRefGoogle Scholar
  12. 11.
    J. W. Niemantsverdriet, A. M. van der Kraan, and W. N. Delgass, J. Catal. 89, 138 (1984).CrossRefGoogle Scholar
  13. 12.
    H. F. J. van’t Blik and J. W. Niemantsverdriet, Appl. Catal. 10, 155 (1984).CrossRefGoogle Scholar
  14. 13.
    J. W. Niemantsverdriet, D. P. Aschenbeck, F. A. Fortunato, and W. N. Delgass, J. Mol. Catal. 25, 285 (1984).CrossRefGoogle Scholar
  15. 14.
    C. C. Chao, P. Duwez, and c. c. Tsuei, J. Appl. Phys. 42, 4282 (1971).CrossRefGoogle Scholar
  16. 15.
    M. Ichikawa, T. Fukushima, T. Yokoyama, N. Kosugi, and H. Kuroda, J. Chem. Soc., Chem. Commun., submitted for publication.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Yoshitaka Minai
    • 1
  • Takeshi Tominaga
    • 1
  • Takakazu Fukushima
    • 2
  • Masaru Ichikawa
    • 2
  1. 1.Department of Chemistry Faculty of ScienceThe University of TokyoTokyoJapan
  2. 2.Sagami Chemical Research CenterSagamihara KanagawaJapan

Personalised recommendations