Advertisement

Transition Metal Substitution in Fe7 5TM5 B2 0 Amorphous Alloys. Effect on Structure, Thermal Stability, and Structural Relaxation

  • P. Matteazzi
  • G. Cocco
  • G. Le Caer
  • G. Riontino

Abstract

A series of amorphous alloys of Fe80B20, with a constant amount of transition metal substitution and the nominal composition Fe75TM5B20, have been obtained by the “melt-spinning” technique. Differential scanning calorimetry, resistivity, small angle x-ray scattering measurements, and Mössbauer spectroscopy have been utilized to study the substitution-induced modification of the behavior, in both the amorphous and annealed states, of the temperature and enthalpy of crystallization, the activation energy for crystallization, the electrical resistivity, the local magnetic and electronic properties, and the structural homogeneity. The effects of substitution on the electronic structure and hyperfine field at the iron atoms are also discussed.

Keywords

Atomic Number Crystallization Temperature Metallic Glass Amorphous Alloy Isomer Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Granasy, A. Lovas, L. Kiss, T. Kemeny, and E. Kisdi-Koszo, J. Magn. Magn. Mater. 26, 109 (1982).CrossRefGoogle Scholar
  2. 2.
    A. Lovas, L. Granasy, K. Zambo-Balla, and J. Kiraly, in Proceedings Conference on “Metallic Glasses: Science and Technology”, CRIP Budapest, vol. II, p. 291 (1980).Google Scholar
  3. 3.
    J. L. Walter, Mater. Sei. Eng. 50, 137 (1981).CrossRefGoogle Scholar
  4. 4.
    M. Naka, U. Gonser, C. Gorlitz, and H. Ruppersberg, J. Non-Cryst. Solids 45, 99 (1981).CrossRefGoogle Scholar
  5. 5.
    I. W. Donald and M. A. Davies, in “Proc. Third Int. Conf. on Rapidly Quenched Metals”, B. Cantor, ed., vol. I, The Metals Society, London, p. 273 (1978).Google Scholar
  6. 6.
    R. Ray, R. Hasegawa, C. P. Chou, and L. A. Davis, Scripta Met. 11, 973 (1977).CrossRefGoogle Scholar
  7. 7.
    G. Cocco, S. Enzo, C. Antonione, G. Riontino, G. Venturello, Solid State Comm. 51, 771 (1984).CrossRefGoogle Scholar
  8. 8.
    J. M. Greneche and F. Varret, J. Phys. C 15, 5333 (1982).CrossRefGoogle Scholar
  9. 9.
    J. Hesse and A. Rubartsch, J. Phys. E 7, 526 (1974).CrossRefGoogle Scholar
  10. 10.
    G. Le Caer and J. M. Dubois, J. Phys. E 12, 1083 (1979).CrossRefGoogle Scholar
  11. 11.
    S. L. Ruby, Mössbauer Effect Meth. 8, 263 (1973).Google Scholar
  12. 12.
    T. Ozawa, J. Therm. Anal. 2, 301 (1970).CrossRefGoogle Scholar
  13. 13.
    M. Naka, J. Non-Cryst. Solids 41, 71 (1980).CrossRefGoogle Scholar
  14. 14.
    R. Hultgren, R. L. Orr, P. D. Anderson, and K. K. Kelley, in “Selected Values of Thermodynamic Properties of Metals and Alloys”, J. Wiley and Sons, N. Y., 1963.Google Scholar
  15. 15.
    H. W. King, J. Mater. Sei. 1, 79 (1966).CrossRefGoogle Scholar
  16. 16.
    C. Antonione, G. Deila Gatta, A. Lucci, G. Riontino, and G. Venturello, Acta Met. 18, 1169 (1970).CrossRefGoogle Scholar
  17. 17.
    C. Antonione, L. Battezzati, A. Lucci, G. Riontino, and G. Venturello, Scripta Met. 12, 1011 (1978).CrossRefGoogle Scholar
  18. 18.
    L. Battezzati, A. Lucci, and G. Riontino, Thermochem. Acta 23, 213 (1978).CrossRefGoogle Scholar
  19. 19.
    A. L. Greer, Acta Met. 30, 171 (1982).CrossRefGoogle Scholar
  20. 20.
    A. S. Schaafsma, H. Snijders, F. van der Woude, J. W. Drijver, and S. Radelaar, Phys. Rev. B 20, 4423 (1979).CrossRefGoogle Scholar
  21. 21.
    F. E. Luborsky and H. H. Liebermann, Appl. Phys. Lett. 33, 233 (1978).CrossRefGoogle Scholar
  22. 22.
    J. Borchardt and F. Daniels, J. Am. Chem. Soc. 79, 41 (1957).CrossRefGoogle Scholar
  23. 23.
    J. Colmenero, J. Ilarraz, and J. M. Barandiaran, Thermochim. Acta 35, 381 (1980).CrossRefGoogle Scholar
  24. 24.
    S. Ranganathan and M. Von Heimendhai, J. Mat. Sei. 16, 2401 (1981).CrossRefGoogle Scholar
  25. 25.
    A. Lucci, G. Riontino, F. Marino, C. Antonione, and G. Cocco, Materials Chemistry and Physics 10, 549 (1984).CrossRefGoogle Scholar
  26. 26.
    R. W. Cahn, Contemp. Phys. 21, 43 (1980).CrossRefGoogle Scholar
  27. 27.
    T. Egami, K. Maeda, and V. Vitek, Phil. Mag. 41, 883 (1980).CrossRefGoogle Scholar
  28. 28.
    T. Egami, Ann. N. Y. Acad. Sei. 371, 236 (1981).Google Scholar
  29. 29.
    P. Allia, D. Andreone, R. Sato Turtelli, F. Vinai, and G. Riontino, J. Appl. Phys. 53, 8798 (1982).CrossRefGoogle Scholar
  30. 30.
    L. Battezzati and G. Riontino, to be published.Google Scholar
  31. 31.
    R. P. Messmer, in “Amorphous Metallic Alloys”, F. E. Luborsky, eds., Butterworths, London p. 114 (1983).Google Scholar
  32. 32.
    I. Vincze, F. Van Der Woude, T. Kemeny, and A. S. Schaafsma, J. Magn. Magn. Mater. 15-18, 1336 (1980).CrossRefGoogle Scholar
  33. 33.
    P. Allia, R. Sato Turtelli, F. Vinai, and G. Riontino, Solid State Commun. 43, 821 (1982).CrossRefGoogle Scholar
  34. 34.
    L. Takacs, A. Vertes, A. Lovas, E. Kovacs, J. Farkas, and L. Kiss, Nuclear Instruments and Methods 199, 281 (1982).CrossRefGoogle Scholar
  35. 35.
    L. R. Walker, G. K. Wertheim, and V. Jaccarino, Phys. Rev. Letters 6, 3 (1961).CrossRefGoogle Scholar
  36. 36.
    L. Cser, I. Gladkin, and C. Hargitai, Phys. Stat. Sol. (b) 124, 271 (1984).CrossRefGoogle Scholar
  37. 37.
    S. M. Dubiel and J. Zukrowski, J. Magn. Magn. Mater. 23, 214 (1981).CrossRefGoogle Scholar
  38. 38.
    S. M. Dubiel and W. Zinn, J. Magn. Magn. Mater. 45, 298 (1984).CrossRefGoogle Scholar
  39. 39.
    R. C. O’Handley, Solid State Comm. 38, 703 (1981).CrossRefGoogle Scholar
  40. 40.
    T. Kemeny, B. Fogarassy, I. Vincze, I. W. Donald, M. J. Besnus, and H. A. Davies, Proc. 4th Int. Conf. on Rapidly Quenched Metals, T. Masumoto and K. Suzuki, eds., The Japan Institute of Metals, Sendai, Japan, p. 851 (1982).Google Scholar
  41. 41.
    E. Nold, P. Lamparter, H. Olbrich, A. Rainier-Harbach, and S.Steeb, Z. Naturforsch. 36a, 1032 (1981).Google Scholar
  42. 42.
    K. Osamura, K. Shibue, R. Suzuki, and Y. Murakami, J. Mat. Sei. 16, 957 (1981).CrossRefGoogle Scholar
  43. 43.
    E. Nold, S. Steeb, and P. Lamparter, Z. Naturforsch 35a, 610 (1980).Google Scholar
  44. 44.
    J. L. Walter, S. F. Bartram, and I. Mello, Mater. Sei. Eng. 36, 193 (1978).CrossRefGoogle Scholar
  45. 45.
    J. M. Dubois and G. Le Caer, in “The Structure of Non-Crystalline Materials”, P. H. Gaskell, ed., Taylor & Francis, London, p. 206 (1982)Google Scholar
  46. 46.
    J. Durand, in “Glassy Metals: Magnetic, Chemical and Structural Proper ties”, R. Hasegawa, ed., CRC Press, Inc., Florida (USA), p. 109 (1983).Google Scholar
  47. 47.
    J. L. Walter and A. E. Berkowitz, in “Rapidly Quenched Metals”, S. Steeb and H. Warlimont, eds., Elsevier Science Publishers B.V., New York, p. 1303 (1985).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • P. Matteazzi
    • 1
  • G. Cocco
    • 2
  • G. Le Caer
    • 3
  • G. Riontino
    • 4
  1. 1.Istituto di Chimica IndustrialeUniversità di PadovaPadovaItaly
  2. 2.Dipartimento di Chimica-FisicaUniversità di VeneziaVeneziaItaly
  3. 3.Laboratoire de MetallurgieEcole des MinesNancyFrance
  4. 4.Istituto di Chimica Generale ed Inorganica Facoltà di FarmaciaUniversità di TorinoTorinoItaly

Personalised recommendations