Advertisement

Ultrasound pp 85-103 | Cite as

Biological Effects of Acoustic Cavitation

  • Edwin L. Carstensen

Abstract

Although there is no basis in present knowledge to indicate that human subjects have been harmed in diagnostic applications of ultrasound, there is clear evidence of damage to lower organisms with temporal maximum intensities somewhat less than those available from certain diagnostic devices. Where exposures of this kind have caused clear effects, the mechanism of action appears to be related to the phenomenon of cavitation. It now remains to determine whether these observations have relevance for medical practice.

Keywords

Acoustic Pressure Ultrasonic Irradiation Pulse Ultrasound Acoustic Cavitation Diagnostic Ultrasound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnett, S. B., 1983, The Influence of Ultrasound on Embryonic Development, Ultrasound Med. Biol. 9:19–24.PubMedCrossRefGoogle Scholar
  2. Berg, R. B., Child, S. Z. and Carstensen, E. L., 1983, The Influence of Carrier Frequency on the Killing of Drosophila Larvae by Microsecond Pulses of Ultrasound, Ultrasound Med. Biol. 9:L448–L451.PubMedCrossRefGoogle Scholar
  3. Braginskaya, F. I. and Dunn, F., 1981, Some Aspects of the Effect of Ultrasound on Biological Structures, Biophysics 26:550.Google Scholar
  4. Carstensen, E. L., Child, S. Z., Law, W. K., Horowitz, D. R. and Miller, M. W., 1979, Cavitation as a Mechanism for the Biological Effects of Ultrasound on Plant roots, J. Acoust. Soc. Am. 66:1285–1291.CrossRefGoogle Scholar
  5. Carstensen, E. L. and Child, S. Z., 1980, Effects of Ultrasound on Drosophila: II. The Heating Mechanism, Ultrasound Med. Biol. 6:257–261.PubMedCrossRefGoogle Scholar
  6. Carstensen, E. L.,Donaldson, T. L., Miller, M. W., Law, W. K. and Vives, B., 1981, Distribution of Gas in the Roots of Pisum sativuirif Env. Exp. Bot. 21:1–4.CrossRefGoogle Scholar
  7. Carstensen, E. L. and Flynn, H. G., 1982, The Potential for Transient Cavitation with Microsecond Pulses of Ultrasound, Ultrasound Med. Biol. 8:L720–L724.PubMedCrossRefGoogle Scholar
  8. Child, S. Z., Carstensen, E. L. and Smachlo, K., 1981, Effects of Ultrasound on Drosophila: III. Exposure of Larvae to Low-Temporal-Average-Intensiy, Pulsed Irradiation, Ultrasound Med. Biol. 7:167–173.PubMedCrossRefGoogle Scholar
  9. Child, S. Z. and Carstensen, E. L., 1982, Effects of Ultrasound on Drosophila: IV. Pulsed Exposures of Eggs, Ultrasound Med. Biol. 8:311–312.PubMedCrossRefGoogle Scholar
  10. Child, S. Z., Davis, H. and Carstensen, E. L., 1984, A Test for the Effects of Low-Temporal-Average-Intensity, Pulsed Ulrasound on the Rat Fetus, Expl. Cell Biol. 52:207– 210.Google Scholar
  11. Ciaravino, V., Miller, M. W. and Kaufman, G. E., 1981, The Effect of 1 MHz Ultrasound on the Proliferation of Synchronized Chinese Hamster V-79 Cells, Ultrasound Med. Biol. 7:175–184.PubMedCrossRefGoogle Scholar
  12. Clarke, P. R. and Hill, C. R., 1970, Physical and Chemical Aspects of Ultrasonic Disruption of Cells, J. Acoust. Soc. Am. 47:649–653.PubMedCrossRefGoogle Scholar
  13. Coakley, W. T. and Dunn, F., 1971, Degradation of DNA in High-Intensity Focused Ultrasonic fields at 1 MHz, J. Acoust. Soc. Am. 50:1539–1545.PubMedCrossRefGoogle Scholar
  14. Crum, L. A. and Hansen, G. M., 1982, Growth of Air Bubbles in Tissue by Rectified Diffusion, Phys. Med. Biol. 27:413– 417.PubMedCrossRefGoogle Scholar
  15. Crum, L. A. and Fowlkes, J. B., 1985, Cavitation Produced by Short Acoustic Pulses, Ultrasonics International ,London, UK, July 2–5, 1985.Google Scholar
  16. Eames, F. A., Carstensen, E. L., Miller, M. W. and Li, M., 1975 Ultrasonic Heating of Vicia faba Roots, J. Acoust. Soc. Am. 57:1192–1194.CrossRefGoogle Scholar
  17. Edmonds, P. D. and Sancier, K. M., 1983, Evidence for Free Radical Production by Ultrasonic Cavitation in Biological Media, Ultrasound Med. Biol. 9:635–639.PubMedCrossRefGoogle Scholar
  18. Flynn, H. G., 1982, Generation of Transient Cavities in Liquids by Microsecond Pulses of Ultrasound, J. Acoust. Soc. Am. 72:1926–1932.CrossRefGoogle Scholar
  19. Fry, F. J., Kossoff, G., Eggleton, R. C. and Dunn, F., 1970, Threshold Ultrasonic Dosage for Structural Changes in the Mammalian Brain, J. Acoust. Soc. Am. 48:1413–1417.PubMedCrossRefGoogle Scholar
  20. Galperin-Lemaitre, H., Kirsh-Volders, M. and Levi, S., 1975, Ultrasound and Mammalian DNA, Lancet ,October 4, 1975, p. 662.Google Scholar
  21. Gershoy, A., Miller, D. L. and Nyborg, W. L., 1976, Intercellular Gas: Its Role in Sonated Plant Tissue, Ultrasound in Medicine 2:501.Google Scholar
  22. Gupta, A. and Wang, S., 1976, Effects of Low Intensity Ultrasound on Nucleic Acid Components, in “Ultrasonic Symposium Proc”, IEEE No. 76, CH1120-5SU, p. 92.Google Scholar
  23. Harvey, E. N. and Loomis, A. L., 1928, High Frequency Sound Waves of Small Intensity and their Biological Effects, Nature 121:622–624.CrossRefGoogle Scholar
  24. Holmer, N. G., Johnson, A. and Josefsson, J. 0., Effects of Ultrasonic Irradiation upon Amoeba proteus, Z. Naturforsch. 28c:607–609.Google Scholar
  25. Henglein, A., 1985, Sonolysis of Carbon Dioxide, Nitrous Oxide and Methane in Aqueous Solution, Z. Naturforsch. 40b:100–107.Google Scholar
  26. Law, W. K., Carstensen, E. L. and Miller, M. W., 1978, Effects of Localized Ultrasonic Irradiation on Pisum sativum Roots, Env. Exp. Bot. 18:207–218.CrossRefGoogle Scholar
  27. Lehamnn, J. and Herrick, J., 1953, Biologic Reactions to Cavitation. A Consideration for Ultrasonic Therapy, Arch. Phys. Med. Rehab. 34:85.Google Scholar
  28. Lehmann, J. F. and Krusen, F. H., 1955, Biophysical Effects of Ultrasonic Energy on Carcinoma and their Possible Significance, Arch. Phys. Med. Rehab. 36:452–459.Google Scholar
  29. McKee, J. R., Christman, C. L., O’Brien, W. and Wang, S., 1977 ,Effects of Ultrasound on Nucleic Acid Bases, Biochem. 16:4651.CrossRefGoogle Scholar
  30. Miller, D. L., 1977, The Effects of Ultrasonic Activation of Gas Bodies in Elodea Leaves During Continuous and Pulsed Irradiation at 1 MHz, Ultrasound Med. Biol. 3:221.PubMedCrossRefGoogle Scholar
  31. Miller, D. L., 1979a, A Cylindrical Bubble Model for the Response of Plant-Tissue Gas-Bodies to Ultrasound, J. Acoust. Soc. Am. 65:1313.CrossRefGoogle Scholar
  32. Miller, D. L., 1979b, Cell Death Thresholds in Elodea for 0.45-10 MHz Ultrasound Compared to Gas-Body Resonance Theory, Ultrasound Med. Biol. 5:351.PubMedCrossRefGoogle Scholar
  33. Miller, D. L., Nyborg, W. L. and Whitcomb, C. C., 1979c, Platelet Aggregation Induced by Ultrasound under Specialized Conditions in vitro, Science 205:505–507.PubMedCrossRefGoogle Scholar
  34. Miller, D. L., 1985, Microstreaming as a Mechanism of Cell Death in Elodea Leaves Exposed to Ultrasound, Ultrasound Med. Biol. 11:285–292.PubMedCrossRefGoogle Scholar
  35. Reisz, P., Berndahl, D. and Christman, C. L., 1985, Free Radical Generation by Ultrasound in Aqueous and Non-Aqueous Solutions, Environmental Health Perspectives ,in press.Google Scholar
  36. Sacks, P. G., Miller, M. W. and Sutherland R. M., 1981,Influence on Growth Conditions and Cell-Cell Contact on Responses of Tumor Cells to Ultrasound, Radiat. Res.87:175.PubMedCrossRefGoogle Scholar
  37. Sarvazyan, A. P., Beloussov, L. V., Petropovlovskaya, M. N. and Ostroumova, T. V., 1982, The Action of Low-Intensity Pulsed Ultrasound on Amphibian Embryonic Tissues, Ultrasound Med. Biol. 8:639–654.PubMedCrossRefGoogle Scholar
  38. Taylor, K. J. W. and Dyson, M., 1973, Toxicity Studies on the Interaction of Ultrasound on Embryonic and Adult Tissues, Utrasonics in Medicine (Proc. 2nd World Congress Ultrasound in Medicine) Excerpta Medica, Amsterdam, p.353– 359.Google Scholar
  39. ter Haar, G., Dyson, M. and Talbert, D., 1978, Ultrasound Induced Contractions in Mouse Uterine smooth Muscle in vivo, Ultrasonics 16:275–276.PubMedCrossRefGoogle Scholar
  40. ter Haar, G. R. and Daniels, S., 1981, Evidence for Ultrasonically Induced Cavitation in vitro, Phys. Med. Biol. ,26:1145–1149.PubMedCrossRefGoogle Scholar
  41. ter Haar, G., Daniels, S., Eastaugh, K. C. and Hill, C. R., 1982, Ultrasonically Induced Cavitation in vivo, Br. J. Cancer 45 (Suppl V) :151–155.Google Scholar
  42. Thacker, J., 1973, The Possibility of Genetic Hazard from Ultrasonic Radiation, Curr. Top. Radiat. Res. Quart. 8:235.Google Scholar
  43. Williams, A. R., Sykes, S. M. and O’Brien, Jr., W. D., 1976, Ultrasonic Exposure Modifies Platelet Morphology and Function in vitro, Ultrasound Med. Biol. 2:311.CrossRefGoogle Scholar
  44. Williams, A. R. and Miller, D. L., 1980, Photometric Detection of ATP Release from Human Erythrocytes Exposed to Ultrasonically Activated Gas-Filled Pores, Ultrasound Med. Biol. 6:251–256.PubMedCrossRefGoogle Scholar
  45. Williams, A. R., 1983, “Ultrasound: Biological Effects and Potential Hazards,” Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Edwin L. Carstensen
    • 1
  1. 1.Department of Electrical EngineeringUniversity of RochesterRochesterUSA

Personalised recommendations