Ultrasound pp 171-183 | Cite as

Haematological Effects

  • A. R. Williams


The role of blood perfusion in the maintenance of tissue viability is so vital that it is not possible to administer any diagnostic or therapeutic ultrasound exposure without also irradiating blood and the vessels which contain it. If ultrasound produces a relatively small change in the functional properties of the blood (e.g. an effect on leucocytes and their role in the immunological protection of the animal) or in the ability of blood to flow through small vessels (i.e. any tendency to induce the blood to clot), it can exert a disproportionately large effect on the well-being of that animal.


Displacement Amplitude Release Reaction Ultrasound Exposure Therapeutic Ultrasound Radiation Pressure Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akopyan, V. B., Abuladze, N.K., 1982, Interspecific differences of erythrocytes ultrasonic resistivity of warm-blooded animals. Studia Biophys, 88: 119.Google Scholar
  2. Ghater, B.V., Williams, A. R., 1977, Platelet aggregation induced in vitro by therapeutic ultrasound. Thrombos Haemostas, 38: 640.Google Scholar
  3. Chater, B. V., Williams, A.R., 1982, Absence of platelet damage in vivo following the exposure of non-turbulent blood to therapeutic ultrasound. Ultrasound Med Biol, 8: 85.CrossRefGoogle Scholar
  4. Crowell. J.A., Kusserow, B. K, Nyborg, W.L., 1977, Functional changes in white blood cells after microsonation. Ultrasound Med Biol, 3: 185.PubMedCrossRefGoogle Scholar
  5. Crum, L. A., 1979, Tensile strength of water. Nature, 278: 148.CrossRefGoogle Scholar
  6. Dyson, M., Pond, J. B., Woodward, B., Broadbent, J., 1974, The production of blood cell stasis and endothelial damage in the blood vessels of chick embryos treated with ultrasound in a stationary wave field. Ultrasound Med Biol, 1: 133.PubMedCrossRefGoogle Scholar
  7. Gross, D. R., Miller, D. L, Williams, A.R., 1985, A search for ultrasound cavitation within the canine cardiovascular system. Ultrasound Med Biol, 11: 85.PubMedCrossRefGoogle Scholar
  8. Hughes, D. E., Nyborg, W. L., 1962, Cell disruption by ultrasound. Science, 138: 108.PubMedCrossRefGoogle Scholar
  9. Lizzi, F. L., Coleman, D. J., Driller, J., Franzen, L. A., Jakobiec, F. A., 1978, Experimental ultrasonically induced lesions in the retina, choroid and sclera. Invest Ophthalmol Vis Sci, 17: 350.PubMedGoogle Scholar
  10. Love, L. A., Kremkau, F.W., 1980, Intracellular temperature distribution produced by ultrasound. J Acoust Soc Amer, 67: 1045.CrossRefGoogle Scholar
  11. Ludlam, C. A., Moore, S., Bolton, A. E., Pepper, P. S., Cash, J. D., 1975, The release of human platelet-specific protein measured by a radioimmunoassay. Thrombos Res, 6: 543.CrossRefGoogle Scholar
  12. Lunan, K.D., Wen, A.C., Barfod, E.T., Edmonds P.D., Pratt, D. E., 1979, Decreased aggregation of mouse platelets after in vivo exposure to ultrasound. Thrombos Haemostasis, 40: 568.Google Scholar
  13. Messino. D., Sette, D., Wanderlingh, F., 1963, Statistical approach to ultrasonic cavitation. J Acoust Soc Amer, 35: 1575.CrossRefGoogle Scholar
  14. Miller, D.L., Nyborg, W. L., Whitcomb, C. C., 1978, In vitro clumping of platelets exposed to low intensity ultrasound. JLn: Ultrasound in medicine, ed White DN, Lyons EA. New York, Plenum Press, 4: 545.Google Scholar
  15. Miller, D. L., Nyborg, W.L., Whitcomb, C. C., 1979, Platelet aggregation induced by ultrasound under specialized conditions in vitro. Science, 205: 505.PubMedCrossRefGoogle Scholar
  16. Miller, D. L., Williams, A. R., Nyborg, W. L., 1979, Photochemical detection of platelet damage induced by low intensity ultrasound, Reflections, 5: 193,Google Scholar
  17. Nyborg, W. L., 1965, Acoustic streaming. In: Physical acoustics, ed. Mason WP. New York, Academic Press.Google Scholar
  18. Nyborg, W.L., 1978, Physical mechanisms for biological effects of ultrasound. USDHEW Publication (FDA) 78-8062: 1.Google Scholar
  19. Roelandt, J., 1982 Contrast echocardiography. Ultrasound Med Biol, 8: 471.PubMedCrossRefGoogle Scholar
  20. Rooney, J.A,, 1970, Hemolysis near an ultrasonically pulsating gas bubble. Science, 169: 869.PubMedCrossRefGoogle Scholar
  21. Sanada, M., Hattori, A., Watanabe, T., Shu, T., Kasahara, T., Ohn, M., Tamura. K.,1977, The in vivo effect of ultrasound upon human blood platelets. NikonChoompa Igakukai, Koen Rombunshu, Nov: 149.Google Scholar
  22. Tarssanen, L., 1976, Hemolysis by ultrasound. Scand J Haematol, Suppl 29: 7.Google Scholar
  23. ter Haar, G., Dyson, M., Smith, S.P., 1979, Ultrastructural changes in the mouse uterus brought about by ultrasonic irradiation at therapeutic intensities in standing wave fields. Ultrasound Med Biol, 5: 167.PubMedCrossRefGoogle Scholar
  24. Thomas, D., 1977, Haemostasis. Brit Med Bull, 33: 183.Google Scholar
  25. Williams, A. R., 1974, Release of serotonin from human platelets by acoustic microstreaming. J Acoust Soc Amer, 56: 1640.CrossRefGoogle Scholar
  26. Williams, A. R., 1977, Intravascular mural thrombi produced by acoustic microstreaming. Ultrasound Med Biol, 3: 191.PubMedCrossRefGoogle Scholar
  27. Williams, A. R., 1981, In vivo thrombogenesis. In: The Rheology of Blood, Blood Vessels and Associated Tissues, ed. Gross DR, Hwang NHC. The Netherlands, Sijhoff and Noordhoff.Google Scholar
  28. Williams, A.R., 1982, Absence of meaningful thresholds for bioeffect studies on cell suspensions in vitro. Brit J Cancer, 45: 192.CrossRefGoogle Scholar
  29. Williams, A. R., Chater, B. V., Allen, K. A, Sanderson, J, H., 1981, The use of β-Thromboglobulin to detect platelet damage by therapeutic ultrasound in vivo. J Clin Ultrasound, 9: 145.PubMedCrossRefGoogle Scholar
  30. Williams, A. R, Chater, B. V., Allen, K. A., Sherwood,.M. R, Sanderson, J. H., 1978,Release of β-Thromboglobulin from human platelets by therapeutic intensities of ultrasound. Brit J Haematol, 40: 133.CrossRefGoogle Scholar
  31. Williams, A.R., Hughes, D.E., Nyborg, W. L., 1970,Hemolysis near a transversely oscillating wire. Science, 169: 871,PubMedCrossRefGoogle Scholar
  32. Williams, A. R., Miller, D.L., 1980, Photometric detection of ATP release from human erythrocytes exposed to ultrasonically activated gas-filled pores. Ultras Med Biol, 6: 251.CrossRefGoogle Scholar
  33. Williams, A. R., O’Brien, W.D., Coller, B. S., 1976a, Exposure to ultrasound decreases the recalcification time of platelet rich plasma. Ultrasound Med Biol, 2: 113.PubMedCrossRefGoogle Scholar
  34. Williams, A. R., Sykes, S.M, O’Brien, W. D., 1976b, Ultrasonic exposure modifies platelet morphology and function in vitro. Ultrasound Med Biol, 2: 311.CrossRefGoogle Scholar
  35. Wong, Y. S., Watmough, D.J., 1980, Haemolysis of red blood cells in vitro and in vivo caused by therapeutic ultrasound at 0.75 MH • Proc Ultrasound Interact Med Biol Symp. Reinhardsbrunn, E Germanyz, C 14.Google Scholar
  36. Yaroniene G, 1978, Response of biological systems to low-intensity ultrasonic waves. Proc FASE 78, Warszawa: 13.Google Scholar
  37. Zarod, A. P., Williams, A. R., 1977, Platelet aggregation in vivo by therapeutic ultrasound. Lancet, 2: 1266.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • A. R. Williams
    • 1
  1. 1.Dept. of Medical BiophysicsUniversity of Manchester Medical SchoolManchesterEngland

Personalised recommendations