ESCA for the Study of Biomaterial Surfaces

  • Buddy D. Ratner
Part of the Polymer Science and Technology book series (POLS, volume 34)


Polymer surface analysis is essential for the study of biomaterials because the ultimate biological response to implanted materials depends on what proteins and cells “see” at the interface. Ideally, we would like to routinely correlate the characteristics of the surface structure with the events that comprise the observed biological response. Electron spectroscopy for chemical analysis (ESCA) has been found to be useful in enhancing our understanding of biomaterials surfaces and has demonstrated the potential to generate data that might be correlated with complex biological interactions.


Hard Segment Chain Extender Biomaterial Surface Core Level Electron Tetramethylene Glycol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Ratner, in: Treatise on Clean Surface Technology (K.L., Mittal, ed.), p., Plenum Press, New York (1985). (in press)Google Scholar
  2. 2.
    B.D. Ratner, Analysis of surface contaminants on intra-ocular lenses, Arch. Ophthal. 101, 1434–1438(1983).Google Scholar
  3. 3.
    B.D. Ratner, J.J. Rosen, A.S. Hoffman and L.H. Scharpen, in: Surface Contamination (K.L., Mittal, ed.), Vol. 2, pp.669–686, Plenum Publishing Corp., New York (1979).Google Scholar
  4. 4.
    B.D. Ratner, P.K. Weathersby, A.S. Hoffman, M.A. Kelly and L.H. Scharpen, Radiation-grafted hydrogels for biomaterial applications as studied by the ESCA technique, J. Appl. Polym. Sci. 22, 643–664(1978).CrossRefGoogle Scholar
  5. 5.
    F.J. Holly and M.F. Refojo, in: Hydrogels for Medical and Related Applications, ACS Symposium Series (J.D., Andrade, ed.), Vol. 31, pp.252–266, American Chemical Society, Washington, DC (1976).CrossRefGoogle Scholar
  6. 6.
    D.S. Everhart and C.N. Reilley, The effects of functional group mobility on quantitative ESCA of plasma modified polymer surfaces, Surf. Interf. Anal. 3, 126–133(1981).CrossRefGoogle Scholar
  7. 7.
    D.S. Everhart and C.N. Reilley, Polymer functional group mobility II. Partition of ion pairs between hydrophobic and hydrophilic phases of plasma oxidized polyethylene, Surf. Interf, Anal. 3, 258–268(1981).CrossRefGoogle Scholar
  8. 8.
    J.D. Andrade, S.M. Ma, R.N. King and D.E. Gregonis, Contact angles at the solid-water interface, J. Coll. Interf. Sci. 72, 488–494(1979).CrossRefGoogle Scholar
  9. 9.
    Y.C. Ko, B.D. Ratner and A.S. Hoffman, Characterization of hydrophilic-hydrophobic polymeric surfaces by contact angle measurements, J. Coll. Interf. Sci. 82, 25–37(1981).CrossRefGoogle Scholar
  10. 10.
    R.G. Azrak, Surface property variations in melt-formed thermoplastics, J. Coll. Interf. Sci. 47, 779–794(1974).CrossRefGoogle Scholar
  11. 11.
    B.D. Ratner, in: Surface and Interfacial Aspects of Biomedical Polymers(J.D., Andrade, ed.), Vol. 1, pp.373–394, Plenum Publishing Corp., New York (1985).Google Scholar
  12. 12.
    R.W. Paynter, B.D. Ratner and H.R. Thomas, in: Polymers as Biomaterials(S.W., Shalaby, A.S., Hoffman, B.D., Ratner and T.A., Horbett, eds.), pp.121–133, Plenum Publishing Co., New York (1984).CrossRefGoogle Scholar
  13. 13.
    J.J. O’Malley, H.R. Thomas and G.M. Lee, Surface studies on multicomponent polymer systems by X-ray photoelectron spectroscopy. Polystyrene/poly(ethylene oxide) triblock copolymers, Macromolecules 12, 996–1001(1979).ADSCrossRefGoogle Scholar
  14. 14.
    C.B. Hu and C.S.P. Sung, Surface chemical composition-depth profile of polyether polyurethaneureas as studied by FTIR and ESCA, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 21, 156–158(1980).Google Scholar
  15. 15.
    D. Briggs, D.M. Brewis and M.B. Konieczko, X-ray photoelectron spectroscopy studies of polymer surfaces, J. Mater. Sci. 14, 1344–1348 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    D.T. Clark, W.J. Feast, W.K.R. Musgrave and I. Ritchie, Applications of ESCA to polymer chemistry. Part VI. Surface fluorination of polyethylene. Application of ESCA to the examination of structure as a function of depth, J. Polym. Sci., Polym. Chem. Ed. 13, 857–890(1975).ADSCrossRefGoogle Scholar
  17. 17.
    R. Chujo, T. Nishi, Y. Sumi, T. Adachi, H. Naito and H. Frentzel, Vertical distribution of components in a polymer blend with the aid of the secondary ion mass spectroscopy, J. Polym. Sci., Polym. Lett. Ed. 21, 487–494(1983).ADSCrossRefGoogle Scholar
  18. 18.
    B.D. Ratner, Surface characterization of biomaterials by electron spectroscopy for chemical analysis, Ann. Biomed. Eng. 11, 313–336(1983).CrossRefGoogle Scholar
  19. 19.
    S.R. Hanson, L.A. Harker, B.D. Ratner and A.S. Hoffman, in: Biomaterials 1980; Advances in Biomaterials(G.D., Winter, D.F., Gibbons and H., Plenk Jr., eds.), Vol. 3, pp.519–530, John Wiley and Sons Ltd., Chichester, England (1982).Google Scholar
  20. 20.
    S.R. Hanson, L.A. Harker, B.D. Ratner and A.S. Hoffman, In vivo evaluation of artificial surfaces with a nonhuman primate model of arterial thrombosis, J. Lab. Clin. Med. 95, 289–304(1980).Google Scholar
  21. 21.
    D. Briggs(ed.), Handbook of X-ray and Ultraviolet Photo-electron Spectroscopy, Heyden & Sons, Ltd., London (1977).Google Scholar
  22. 22.
    T.A. Carlson, Photoelectron and Auger Spectroscopy, Plenum Press, New York (1975).Google Scholar
  23. 23.
    P.K. Ghosh, Introduction to Photoelectron Spectroscopy, John Wiley &Sons, New York (1983).Google Scholar
  24. 24.
    K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S.E. Karlsson, I. Lindgren and B. Lindberg, ESCA: Atomic, molecular and solid state structure studied by means of electron spectroscopy, Nova Acta Regiae Societatis Scientiarum Upsaliensis, Ser.IV 20, 5–282(1967).Google Scholar
  25. 25.
    K. Siegbahn, Electron spectroscopy for atoms, molecules, and condensed matter, Science 217, 111–121(1982).ADSCrossRefGoogle Scholar
  26. 26.
    N. Winograd and S.W. Gaarenstroom, in: Physical Methods in Modern Chemical Analvsis(T., Kuwana, ed.), Vol. 2, pp.115–169, Academic Press, New York (1980).Google Scholar
  27. 27.
    D. Briggs, New developments in polymer surface analysis, Polymer 25, 1379–1391(1985).CrossRefGoogle Scholar
  28. 28.
    D.T. Clark, in: Polymer Surfaces(D.T., Clark and W.J., Feast, eds.), pp.309–351, Wiley, J. &Sons, Chichester (1978).Google Scholar
  29. 29.
    A. Dilks, in: Electron Spectroscopy: Theory, Techniques, and Applications(A.D., Baker and C.R., Brundle, eds.), Vol. 4, pp.277–359, Academic Press, London (1981).Google Scholar
  30. 30.
    B.D. Ratner and B.J. McElroy, in: Spectroscopy in the Biomedical Sciences(R.M., Gendreau, ed.), p., CRC Press, Boca Raton, Fl (1985). (in press)Google Scholar
  31. 31.
    J.D. Andrade(ed.), Surface and Interfacial Aspects of Biomedical Polymers, Plenum Press, New York (1985).Google Scholar
  32. 32.
    D. Briggs and M.P. Seah(eds.), Practical Surface Analysis, John Wiley &Sons, Chichester (1983).Google Scholar
  33. 33.
    D.T. Clark, Advances in ESCA applied to polymer characterization, Pure &Appl. Chem. 54(2), 415–438(1982).CrossRefGoogle Scholar
  34. 34.
    M.P. Seah, The quantitative analysis of surfaces by XPS: A review, Surf. Interf. Anal. 2, 222–239(1980).CrossRefGoogle Scholar
  35. 35.
    R.S. Swingle and W.M. Riggs, ESCA, Crit. Rev. Anal. Chem. 5, 267–321 (1975).CrossRefGoogle Scholar
  36. 36.
    CD. Wagner, W.M. Riggs, L.E. Davis and J.F. Moulder, Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prairie, MN (1979).Google Scholar
  37. 37.
    R.W. Paynter, Modification of the Beer-Lambert equation for application to concentration gradients, Surf. Interf. Anal. 3, 186–187(1981).CrossRefGoogle Scholar
  38. 38.
    D. Cohn, A.S. Hoffman, B.D. Ratner and Y. Haque, Plasma-treated surfaces for biomedical applications: compositional analysis, Abstracts of the 2nd International Conference on Polymers in Medicine, Capri, Italy, June 3–7, 1985, C9.Google Scholar
  39. 39.
    D.T. Clark, J. Peeling and J.J. O’Malley, Application of ESCA to polymer chemistry. VIII. Surface structures of AB block copolymers of polydimethylsiloxane and polystyrene, J. Polym. Sci., Polym. Chem Ed. 14, 543–551(1976).ADSCrossRefGoogle Scholar
  40. 40.
    H.R. Thomas and O’Malley, Surface studies on multicomponent polymer systems by X-ray photoelectron spectroscopy: Polystyrene/poly(ethylene oxide) homopolymer blends, Macromolecules 14, 1316–1320(1981).ADSCrossRefGoogle Scholar
  41. 41.
    S.C. Yoon and B.D. Ratner, Surface structure of segmented polyetherurethanes and polyetherurethaneureas with various perfluoro chain extenders. An x-ray photoelectron spectroscopic investigation, Macromolecules. (submitted)Google Scholar
  42. 42.
    J. Blackwell, M.R. Nagarajan and T.B. Hoitink, Structure of polyurethane elastomers: effect of chain extender length on the structure of MDI/diol hard segments, Polymer 23, 950–956(1982).CrossRefGoogle Scholar
  43. 43.
    J. Blackwell and M.R. Nagarajan, Conformational analysis of poly(MDI-butandiol) hard segment in polyurethane elastomers, Polymer 22, 202–208 (1981).CrossRefGoogle Scholar
  44. 44.
    J. Blackwell, J.R. Quay, M.R. Nagarajan, L. Born and H. Hespe, Molecular parameters for the prediction of polyurethane structures, J. Polym. Sci., Polym. Phys. Ed. 22, 1247–1259(1984).ADSCrossRefGoogle Scholar
  45. 45.
    V. Sa Da Costa, D. Brier-Russell, E.W. Salzman and E.W. Merrill, ESCA studies of polyurethanes: blood platelet activation in relation to surface composition, J. Coll. Interf. Sci. 80, 445–452(1981).CrossRefGoogle Scholar
  46. 46.
    J.P. Fischer, P. Fuhge, K. Burg and N. Heimburger, Methoden zur Herstellung und Charakterisierung von Kunststoffen mit verbesserter Blutvertraglichkeit, Angew. Makromol. Chem. 105, 131–165(1982).CrossRefGoogle Scholar
  47. 47.
    S.K. Chang, O.S. Hum, M.A. Moscarello, A.W. Neumann, W. Zingg, M.J. Leutheusser and B. Ruegsegger, Platelet adhesion to solid surfaces. The effect of plasma proteins and substrate wettability, Med. Progr. Technol. 5, 57–66(1977).Google Scholar
  48. 48.
    D.J. Lyman, W.M. Muir and I.J. Lee, The effect of chemical structure and surface properties of polymers on the coagulation of blood. I. Surface free energy efects, Trans. Am. Soc. Artif. Int. Organs 11, 301–306(1965).Google Scholar
  49. 49.
    N. Mohandas, R.M. Hochmuth and E.E. Spaeth, Adhesion of red cell to foreign surfaces in the presence of flow, J. Biomed. Mater. Res. 8, 119–136 (1974).CrossRefGoogle Scholar
  50. 50.
    H. Yasuda, B.S. Yamanashi and D.P. Devito, The rate of adhesion of melanoma cells onto nonionic polymer surfaces, J. Biomed. Mater. Res. 12, 701–706(1978).CrossRefGoogle Scholar
  51. 51.
    B.D. Ratner and R.W. Paynter, in: Polyurethanes in Biomedical Engineering, Progress in Biomedical Engineering(H., Planck, G., Egbers and I., Syre, eds.), Vol. 1, pp.41–68, Elsevier, Amsterdam (1984).Google Scholar
  52. 52.
    M.D. Lelah, L.K. Lambrecht, B.R. Young and S.L. Cooper, Physiochemical characterization and in vivo blood tolerability of cast and extruded biomer, J. Biomed. Mater. Res. 17, 1–22(1983).CrossRefGoogle Scholar
  53. 53.
    G. Binning and H. Rohrer, Scanning tunneling microscopy, Physica 127B, 37–45(1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Buddy D. Ratner
    • 1
  1. 1.Department of Chemical Engineering and Center for Bioengineering, BF-10University of WashingtonSeattleUSA

Personalised recommendations