Skip to main content

Small Diameter Blood Vessel Prostheses from Polyethers

  • Chapter
Polymers in Medicine II

Part of the book series: Polymer Science and Technology ((POLS,volume 34))

  • 271 Accesses

Abstract

Studies on the relation between blood platelet adhesion and type and amount of polyether segments in copolyether-urethanes report a reduced platelet adhesion with increasing polyether content. We therefore assumed that combinations of polyethylene oxide (PEO) and polypropylene oxide (PPOX) might give materials with a good blood compatibility. Water-soluble PEO was attached to PPOX by UV initiated crosslinking. Films were tested on hydrophilicity, mechanical properties, protein adsorption and blood compatibility. The hydrophilicity was determined by swelling experiments. A compromise between hydrophilicity (PEO) and mechanical strength (PPOX) was met at a swelling of 0.5 (PPOX/PEO ratio : 90/10). In protein adsorption studies only small amounts of adsorbed proteins were found. Three blood material interaction in vitro tests, — kallikrein generation (factor XII activation), activated partial thromboplastin time and blood platelet adhesion —, gave good results: a low platelet adhesion and kallikrein generation and a high APTT value. Porous tubings (I.D. 1.3 mm) were fabricated by spinning from solution and implanted in the abdominal aorta of rats. Stress-strain diagrams were comparable to those reported for natural blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. V. Ihlenfeld, T. R. Mathis, L. M. Riddle and S. L. Cooper, Measurements of transient thrombus formation on polymeric materials, Thromb. Res. 14:953 (1979).

    Article  Google Scholar 

  2. S. W. Graham and D. M. Hercules, Surface spectroscopic studies of Avcothane, J. Biomed. Mat. Res. 15:349 (1981).

    Article  Google Scholar 

  3. S. W. Kim, R. G. Lee, H. Oster, D. Coleman, J. D. Andrade, D. J. Lentz and D. Olsen, Platelet adhesion to polymer surfaces, Trans. Am. Soc. Artif. Int. Org., vol. XX:449 (1974).

    Google Scholar 

  4. D. J. Lyman, K. Knutson, B. McNeill and K. Shibatani, The effect of chem. struct, and surf. prop. of synthetic polymers on the coagulation of blood, Trans. Am. Soc. Artif. Int. Org., Vol. XXI:49 (1975)

    Google Scholar 

  5. M. D. Lelah, L. K. Lambrecht, B. R. Young and S. L. Cooper, Physico-chemical characterisation and in vivo blood tolerability of cast and extruded Biomer, J. Biomed. Mat. Res. 17:1 (1983).

    Article  Google Scholar 

  6. V. Sa da Costa, D. Brier-Russel, E. W. Salzman and E. W. Merrill, ESCA studies of polyurethanes, J. Coll. Interf. Sci. 80:445 (1981).

    Article  Google Scholar 

  7. V. Sa da Costa, D. Brier-Russel, G. Trudel III, D. F. Waugh, E. W. Salzman and E. W. Merrill, J. Coll. Interf. Sci. 76:596 (1980).

    Google Scholar 

  8. W. Breemhaar, E. Brinkman, D. J. Ellens, T. Beugeling and A. Bantjes, Preferential adsorption of high density lipoprotein from blood plasma onto biomaterial surfaces, Biomat. 5:269 (1984).

    Article  Google Scholar 

  9. Y. Ykada, H. Iwata, F. Horii, T. Matsunaga, M. Taniguchi, M. Suzuki, W. Taki, S. Yamagata, Y. Yonekawa and H. Handa, Blood compatibility of hydrophilic polymers, J. Biomed. Mat. Res. 15:697 (1981).

    Article  Google Scholar 

  10. D. L. Coleman, D. E. Gregonis and J. D. Andrade, Blood-materials interactions, J. Biomed. Mat. Res. 16:381 (1982).

    Article  Google Scholar 

  11. N. Yui, J. Tanaka, K. Sanui, N. Ogata, T. Okano and Y. Sakurai, Characterisation of the microstructure of PPOX-segmented polyamide and its suppression of platelet adhesion, Polym. J. 16:119 (1984).

    Article  Google Scholar 

  12. F. Hess, C. Jerusalem, P. Grande and B. Braun, Significance of the inner surface structure of small caliber prosthetic blood vessels in relation to the development, presence and fate of a neo-intima, A morphological evaluation, J. Biomed. Mat. Res. 18:745 (1984).

    Article  Google Scholar 

  13. V. Sa da Costa, Thesis, 1979, Mass. Inst. Techn., USA.

    Google Scholar 

  14. H. C. W. M. Buijs, US. pat. 3.798.249.

    Google Scholar 

  15. W. R. Sorenson and T. W. Campbell, Preparative methods of polymer chemistry, Interscience, New York, 1968, USA.

    Google Scholar 

  16. E. L. Muetterties, US. pat. 2.748.145, 2.856.370.

    Google Scholar 

  17. W. E. Hennink, Thesis, 1985, Techn. Univ. Twente, The Netherlands.

    Google Scholar 

  18. L. Sederel, Thesis, 1982, Techn. Univ. Twente, The Netherlands.

    Google Scholar 

  19. M. J. Gallimore and P. Friberger, Simple chromogenic peptide substrate assays for determining prekallikrein, kallikrein inhibition and kallikrein “like” activity in human plasma, Thromb. Res. 25:293 (1982).

    Article  Google Scholar 

  20. J. M. George, Direct assessment of platelet adhesion to glass, Blood 40:862 (1972).

    Google Scholar 

  21. S. Krause, Polymer-polymer compatibility, in: “Polymer Blends”, D. R. Paul and S. Newman, Academic Press, New York (1978).

    Google Scholar 

  22. K. Rastogi and L. E. St. Pierre, Interfacial phenomena in macromolecular systems V, J. Coll. Interf. Sci. 35:16 (1971).

    Article  Google Scholar 

  23. K. Rastogi and L. E. St. Pierre, Interfacial phenomena in macromolecular systems III, J. Coll. Interf. Sci. 31:168 (1969).

    Article  Google Scholar 

  24. E. W. Merrill, E. W. Salzman, S. Wan, N. Nahmud, L.Kushner, J. N. Lindon and J. Curme, Platelet-compatible hydrophilic segmented polyurethanes from polyethylene glycols and cyclohexane diiso-cyanate, Trans. Am. Soc. Artif. Int. Org. Vol XXVIII: 482 (1982).

    Google Scholar 

  25. R. A. White, F. M. Hirose, R. W. Sproat, R. S. Lawrence and R. J. Nelson, Histiopathologic observations after short-term implantations of two porous elastomers in dogs, Biomat. 2:171 (1981).

    Article  Google Scholar 

  26. M. Hasegawa and T. Azuma, Mechanical properties of synthetic arterial grafts, J. Biomechn. 12:509 (1978).

    Article  Google Scholar 

  27. J. Leidner, E. W. C. Wong, D. C. MacGregor and G. J. Wilson, J. Bio-med. Mat. Res. 17:229 (1983).

    Article  Google Scholar 

  28. D. J. Lyman, F. J. Fazzio, H. Voorhees, G. Robinson and D. Albo, Compliance as a factor effecting the patency of a copolyurethane vascular graft, J. Biomed. Mat. Res., 12:337 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Bots, J.G.F., van der Does, L., Bantjes, A. (1986). Small Diameter Blood Vessel Prostheses from Polyethers. In: Chiellini, E., Giusti, P., Migliaresi, C., Nicolais, L. (eds) Polymers in Medicine II. Polymer Science and Technology, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1809-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1809-5_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9012-4

  • Online ISBN: 978-1-4613-1809-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics