Durability Prediction and Measurement for Polymeric Biomaterials

  • J. L. Kardos
  • K. P. Gadkaree
  • A. P. Bhate
Part of the Polymer Science and Technology book series (POLS, volume 34)


Synthetic polymer biomaterials are often asked to perform under conditions of large cyclic deformations for long lifetimes. Typical of such applications are Left Ventricular Assist (LVA) pump bladders, heart valve components, and vascular grafts. In designing with these materials and eventually qualifying them for clinical usage, it is necessary to be able to predict the fatigue lifetimes accurately and reliably. To be sure, these materials must be biologically compatible; but even the most perfectly biocompatible material will not be qualified for structural use in humans unless its mechanical longevity can be proven from an accurate data base.


Fatigue Life Flaw Size Flaw Growth Flaw Propagation Hard Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Manson and R. W. Hertzberg, Crit. Rev. Macromol. Sci., 1 ,433, (1973).Google Scholar
  2. 2.
    R. W. Hertzberg and J. A. Manson, Fatigue of Engineering Plastics, Academic Press, NY (1980).Google Scholar
  3. 3.
    J. M. Whitney, Fatigue of Fibrous Composite Materials, ASTM STP 723, American Society for Testing and Materials, Phila., 1981, p. 133.CrossRefGoogle Scholar
  4. 4.
    A. N. Gent, P. B. Lindley and A. G. Thomas, J. Appl. Pol. Sci., 8 ,• 453–477 (1974).Google Scholar
  5. 5.
    G. J. Lake and P. B. Lindley, J. Appl. Pol. Sci., 8 ,107–121 (1974).Google Scholar
  6. 6.
    J. P. Berry, J. Poly. Sci., 50, 107 (1961).CrossRefADSGoogle Scholar
  7. 7.
    R. E. Whittacker, J. Appl. Pol. Sci., 18, 2339–2353 (1974).CrossRefGoogle Scholar
  8. 8.
    A. T. DiBenedetto and G. Salee, Proc. 34th Antec, Soc. Plastics Engineers, Atlantic City, 1976, p. 103.Google Scholar
  9. 9.
    K. P. Gadkaree and J. L. Kardos, J. Appl. Pol. Sci., 29, 3041 (1984).CrossRefGoogle Scholar
  10. 10.
    R. S. Rivlin and A. G. Thomas, J. Pol. Sci., 10, 291 (1953).CrossRefADSGoogle Scholar
  11. 11.
    A. P. Bhate and J. L. Kardos, Pol. Eng. Sci., 24, 862 (1984).CrossRefGoogle Scholar
  12. 12.
    A. P. Bhate, W. M. Swanson, and J. L. Kardos, Biomaterials (submitted).Google Scholar
  13. 13.
    M. W. Greensmith, J. Appl. Pol. Sci., 7, 993 (1963).CrossRefGoogle Scholar
  14. 14.
    E. H. Andrews, Fracture in Polymers, Oliver and Boyd, London, 1968, pp. 152–153.Google Scholar
  15. 15.
    J. C. Radon, J. Macromol. Sci.-Phys., B14, 511 (1977).CrossRefGoogle Scholar
  16. 16.
    D. C. Prevorsek and Y. D. Kwon, J. Macromol. Sci.-Phys., B12, 447 (1976).Google Scholar
  17. 17.
    K. V. Bury, Statistical Models in Applied Science, John Wiley, 1975, pp. 204–206.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. L. Kardos
    • 1
  • K. P. Gadkaree
    • 1
    • 2
  • A. P. Bhate
    • 1
    • 3
  1. 1.Materials Research Laboratory and Department of Chemical EngineeringWashington UniversitySt. LouisUSA
  2. 2.Corning Glass WorksCorningUSA
  3. 3.Tamko, Inc.JoplinUSA

Personalised recommendations