Skip to main content

Part of the book series: The Plenum Chemical Engineering Series ((PCES))

Abstract

Nylons are polymers having amide

linkages, because of which they are also called polyamides. Since proteins are polyamides of various amino acids, they, too, fall into this category, but the discussion in this chapter is limited to industrially important synthetic polyamides. There are two classes of synthetic nylons. One of these is formed from cyclic monomers (or amino acids), as for example, nylon 6 {H HN-(CH2)5-CO n -OH}, which has six carbon atoms per repeat unit and is made from -caprolactam, nylon 12 {H NH-(CH2 11-CO n -OH}, having 12 carbon atoms in the repeat unit, and made from the lactam of 12-amino dodecanoic acid, etc. The single index used in describing these nylons indicates the number of carbon atoms in the repeat unit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. K. Reimschuessel, Nylon 6. Chemistry and mechanisms, J. Polym. Sci. Macromol Rev. 12, 65–139 (1977).

    Article  CAS  Google Scholar 

  2. H. K. Reimschuessel, in Ring Opening Polymerization (K. S. Frisch and S. L. Reegan, Eds.), 1st ed., pp. 303–326, Marcel Dekker, New York (1969).

    Google Scholar 

  3. K. Tai and T. Tagawa, Simulation of hydrolytic polymerization of ε-caprolactam in various reactors, Ind. Eng. Chem., Prod. R2D 22, 192–205 (1983).

    Article  CAS  Google Scholar 

  4. J. Sebenda, Recent progress in the polymerization of lactams, Prog. Polym. Sci. 6,123–168 (1978).

    Article  CAS  Google Scholar 

  5. S. K. Gupta and A. Kumar, Simulation and design of nylon 6 reactors, J. Macromol. Sci. Rev. Macromol. Chem. Phys. C26, 183–246 (1986).

    Google Scholar 

  6. W. H. Carothers and G. T. Berchet, Studies on polymerization and ring formation. VIII. Amides from ε-aminocaproic acid, J. Am. Chem. Soc. 52, 5289–5291 (1930).

    Article  CAS  Google Scholar 

  7. P. H. Hermans, D. Heikens, and P. F. van Velden, On the mechanism of the polymerization of ε-caprolactam. II. The polymerization in the presence of water, J. Polym. Sci. 30, 81–104 (1958).

    Article  CAS  Google Scholar 

  8. Ch. A. Kruissink, G. M. van der Want, and A. J. Staverman, On the mechanism of the polymerization of ε-caprolactam. I. The polymerization initiated by ε-aminocaproic acid, J. Polym. Sci. 30, 67–80 (1958).

    Article  CAS  Google Scholar 

  9. K. Tai and T. Tagawa, The kinetics of hydrolytic polymerization of ε-caprolactam. V. Equilibrium data on cyclic oligomers, J. Appl. Polym. Sci. 27, 2791–2796 (1982).

    Article  CAS  Google Scholar 

  10. H. K. Reimschuessel and G. J. Dege, Polyamides: Decarboxylation and desamination in nylon 6 equilibrium polymer, J. Polym. Sci. A-1 8, 3265–3283 (1970).

    Article  CAS  Google Scholar 

  11. G. J. Dege and H. K. Reimschuessel, Peroxidation of caprolactam and its effect on equilibrium polymerization of cyclic dimer. J. Polym. Sci., Polym. Chem. Ed. 11, 873–896 (1973).

    Article  CAS  Google Scholar 

  12. Y. Arai, K. Tai, H. Teranishi, and T. Tagawa, Kinetics of hydrolytic polymerization of ε-caprolactam. 3. Formation, Polymer 22, 273–277 (1981).

    Article  CAS  Google Scholar 

  13. K. Tai, H. Teranishi, Y. Arai, and T. Tagawa, The kinetics of hydrolytic polymerization of ε-caprolactam, J. Appl. Polym. Sci. 24, 211–224 (1979).

    Article  CAS  Google Scholar 

  14. K. Tai, H. Teranishi, Y. Arai, and T. Tagawa, The kinetics of hydrolytic polymerization of ε-caprolactam. II. Determination of the kinetic and thermodynamic constants by least-squares curve fitting, J. Appl. Polym. Sci. 25, 77–87 (1980).

    Article  CAS  Google Scholar 

  15. F. Wiloth, Mechanism and kinetics of the polymerization of ε-caprolactam in the presence of water. X. Comparison of experimental data with the integration results of a completed reaction-kinetic system of differential equations, Z. Phys. Chem. N.F. 11, 78–102 (1957).

    Article  CAS  Google Scholar 

  16. S. M. Skuratov, A. A. Strepichejev, and E. N. Kanarskaja, Über die wechselseitige umwandlung von zyklischen und linearen polymeren, Faserforsch. Textiltech 4, 390–392 (1953).

    Google Scholar 

  17. H. K. Reimschuessel and K. Nagasubramanian, On the optimization of caprolactam polymerization, Chem. Eng. Sci. 27, 1119–1130 (1972).

    Article  CAS  Google Scholar 

  18. S. K. Gupta, A. Kumar, P. Tandon, and C. D. Naik, Molecular weight distributions for reversible nylon-6 polymerizations in batch reactors, Polymer 22, 481–487 (1981).

    Article  CAS  Google Scholar 

  19. S. K. Gupta, C. D. Naik, P. Tandon, and A. Kumar, Simulation of molecular weight distribution and cyclic oligomer formation in the polymerization of nylon-6, J. Appl. Polym. Sci. 26, 2153–2163 (1981).

    Article  CAS  Google Scholar 

  20. S. K. Gupta, A. Kumar, and K. K. Agrawal, Simulation of three-stage nylon-6 reactors with intermediate mass transfer at finite rates, J. Appl. Polym. Sci. 27, 3089–3101 (1982).

    Article  CAS  Google Scholar 

  21. M. Cave, M.S. dissertation, Imperial College, London, UK (1975).

    Google Scholar 

  22. H. M. Hulburt and S. Katz, Some problems in particle technology: A statistical mechanical formulation, Chem. Eng. Sci. 19, 555–574 (1964).

    Article  CAS  Google Scholar 

  23. K. W. Min, On the application of fractional moments in determining average molecular weight, J. Appl. Polym. Sci. 22, 589–591 (1978).

    Article  CAS  Google Scholar 

  24. A. Gupta and K. S. Gandhi, Molecular weight distribution in batch hydrolytic polymeriz-ation of caprolactam, J. Appl. Polym. Sci. 27, 1099–1104 (1982).

    Article  CAS  Google Scholar 

  25. A Ramagopal, A. Kumar, and S. K. Gupta, Computational scheme for the calculation of molecular weight distributions for nylon 6 polymerization in homogeneous, continuous flow stirred tank reactors with continuous removal of water, Polym. Eng. Sci. 22, 849–856 (1982).

    Article  CAS  Google Scholar 

  26. S. K. Gupta and A. Kumar, Simulation of step growth polymerizations, Chem. Eng. Commun. 20, 1–52 (1983).

    Article  CAS  Google Scholar 

  27. K. Tai, Y. Arai, H. Teranishi, and T. Tagawa, The kinetics of hydrolytic polymerization of ε-caprolactam. IV. Theoretical aspect of the molecular weight distribution, J. Appl. Polym. Sci. 25, 1789 (1980).

    Article  CAS  Google Scholar 

  28. S. K. Gupta, D. Kunzru, A. Kumar, and K. K. Agrawal, Simulation of nylon 6 polymeri-zation in tubular reactors with recycle, J. Appl. Polym. Sci. 28, 1625–1640 (1983).

    Article  CAS  Google Scholar 

  29. Allied Chem. Corp., British Patent, 938652 (1963).

    Google Scholar 

  30. S. C. Chu and I. C. Twilley, 6th Annual Synthetic Fibers Symp., AIChE, Virginia, 1969.

    Google Scholar 

  31. K. Brown, in Numerical Solutions of Systems of Nonlinear Algebraic Equations (C. D. Byrne and C. A. Hall, Eds.), 1st ed., pp. 281–348, Academic, New York (1973).

    Google Scholar 

  32. K. Nagasubramanian and H. K. Reimschuessel, Caprolactam polymerization: Polymeri-zation in backmix flow systems, J. Appl. Polym. Sci. 16, 929–934 (1972).

    Article  CAS  Google Scholar 

  33. M. V. Tirrell, G. H. Pearson, R. A. Weiss, and R. L. Laurence, An analysis of caprolactam polymerization, Polym. Eng. Sci. 15, 386–393 (1975).

    Article  CAS  Google Scholar 

  34. K. Tai, Y. Arai, and T. Tagawa, The simulation of hydrolytic polymerization of ε-caprolactam in various reactors, J. Appl. Polym. Sci. 27, 731–736 (1982).

    Article  CAS  Google Scholar 

  35. A. Kumar and S. K. Gupta, Fundamentals of Polymer Science and Engineering ,1st ed., Tata McGraw-Hill, New Delhi, India (1978).

    Google Scholar 

  36. H. Jacobs and C. Schweigman, Mathematical model for the polymerization of caprolactam to nylon-6, Proc. 5th Eur./2nd Intl. Symp. Chem. Rxn. Eng., Amsterdam, 2–4 May, 1972, pp. B7.1–26.

    Google Scholar 

  37. Vereinigte Glanzstoff Fabriken, German Patent, 1167021 (1962).

    Google Scholar 

  38. O. Fukumoto, Equilibria between polycapramide and water, J. Polym. Sci. 22, 263–270 (1956).

    Article  CAS  Google Scholar 

  39. A. Gupta and K. S. Gandhi, in Frontiers of Chem. Rxn. Eng. (L. K. Doraiswamy and R. A. Mashelkar, Eds.), 1st ed., pp. 667–681, Wiley Eastern, New Delhi, India (1984).

    Google Scholar 

  40. A. Gupta, M. Tech. Dissertation, IIT, Kanpur, India (1981).

    Google Scholar 

  41. Encyclopedia of Industrial Chemical Analysis ,Vol. 8, pp. 115, Wiley, New York (1971).

    Google Scholar 

  42. International Critical Tables ,Vol. 3, 233 pp., McGraw-Hill, New York (1928).

    Google Scholar 

  43. C. Giori and B. T. Hayes, Hydrolytic polymerization of caprolactam. I. Hydrolysis-polycondensation kinetics;... II. Vapor-liquid equilibria, J. Polym. Sci. A-1 8, 335–349, 351–358 (1970).

    Article  CAS  Google Scholar 

  44. J. P. Roos, Mathematical modeling of the sorption of volatile components in Newtonian-high-viscous liquids with the aid of bubbling, Adv. Chem. Ser. 133, 303–315 (1974).

    Article  CAS  Google Scholar 

  45. P. Levenspiel, Chemical Reaction Engineering ,2nd ed., Chapt. 13, Wiley, New York (1972).

    Google Scholar 

  46. J. J. Carberry, Chemical and Catalytic Reaction Engineering ,1st ed., McGraw-Hill, New York (1976).

    Google Scholar 

  47. K. Nagasubramanian and H. K. Reimschuessel, Diffusion of water and caprolactam in nylon 6 melts, J. Appl. Polym. Sci. 17, 1663–1677 (1973).

    Article  CAS  Google Scholar 

  48. W. F. H. Naudin ten Cate, Application of the maximum principle of Pontryagin to optimize a nylon 6 continuous polymerization process, Proc. Internl. Cong. Use of Elec. Comp. in Chem. Eng., Paris, April 1973.

    Google Scholar 

  49. S. Mochizuki and N. Ito, Optimal polymerization temperature profile for nylon-6 with low cyclic oligomers content, Chem. Eng. Sci. 33, 1401–1403 (1978).

    Article  CAS  Google Scholar 

  50. P. J. Hoftyzer, J. Hoogschagen, and D. W. van Krevelen, Optimization of caprolactam polymerization, Proc. 3rd Eur. Symp. Chem. Rxn. Eng., Amsterdam, 15–17 Sept. 1964, pp. 247–253.

    Google Scholar 

  51. A. Ramagopal, A. Kumar, and S. K. Gupta, Optimal temperature profiles for nylon 6 polymerization in plug-flow reactors, J. Appl. Polym. Sci. 28, 2261–2279 (1983).

    Article  CAS  Google Scholar 

  52. S. K. Gupta, B. S. Damania, and A. Kumar, Optimization of nylon-6 reactors with end-point constraints, J. Appl. Polym. Sci. 29, 2177–2194 (1984).

    Article  CAS  Google Scholar 

  53. A. K. Ray and S. K. Gupta, Optimization of nonvaporizing nylon 6 reactors with stopping condition, J. Appl. Polym. Sci. 31, 4529–4550 (1986).

    Google Scholar 

  54. A. E. Bryson and Y. C. Ho, Applied Optimal Control ,1st ed., Blaisdell, Waltham, Massachusetts (1969).

    Google Scholar 

  55. A. Mochizuki and N. Ito, The hydrolytic polymerization kinetics of ε-caprolactam, Chem. Eng. Sci. 28, 1139–1147 (1973).

    Article  CAS  Google Scholar 

  56. J. A. Semlyen and G. R. Walker, Equilibrium ring concentrations and the statistical conformation of polymer chains. II. Macrocyclics in nylon 6, Polymer 10, 597–601 (1969).

    Article  CAS  Google Scholar 

  57. J. M. Andrews, F. R. Jones, and J. A. Semlyen, Equilibrium ring concentrations and the statistical conformations of polymer chains. 12. Cyclics in molten and solid nylon-6, Polymer 15, 420–424 (1974).

    Article  CAS  Google Scholar 

  58. H. Spoor and H. Zahn, Eine methode zur quantitativen papierchromatographischen bestimmung von sekundären aminen und amiden. 17. Mitteilung über oligomere, Z. Anal. Chem. 168, 190–195 (1959).

    Article  CAS  Google Scholar 

  59. H. Zahn and G. B. Gleitsman, Oligomers and pleionomers of synthetic fiber-forming polymers, Agnew. Chem. 75, 772–783 (1963).

    Article  CAS  Google Scholar 

  60. M. Rothe, Polymerhomologe ringamide in polycaprolactam, J. Polym. Sci. 30, 227–238 (1958).

    Article  CAS  Google Scholar 

  61. M. Mutter, U. W. Suter, and P. J. Flory, Macrocyclization equilibria. 3. Poly (6-aminocaproamide), J. Am. Chem. Soc. 98, 5745–5748 (1976).

    Article  CAS  Google Scholar 

  62. J. Jacobson and W. H. Stockmayer, Intramolecular reaction in polycondensations. I. The theory of linear systems, J. Chem. Phys. 18, 1600–1606 (1950).

    Article  CAS  Google Scholar 

  63. J. A. Semlyen, Ring-chain equilibria and conformation of polymer chains, Adv. Polym. Sci. 22, 41–75 (1976).

    Article  Google Scholar 

  64. P. J. Flory, U. W. Suter, and M. Mutter, Macrocyclization equilibria. I. Theory, J. Am. Chem. Soc. 98, 5733–5739 (1976).

    Article  CAS  Google Scholar 

  65. P. J. Flory, Statistical Mechanics of Chain Molecules ,1st ed., Wiley, New York (1969).

    Google Scholar 

  66. D. C. Jones and T. R. White, in Step Growth Polymerization (D. H. Solomon, Ed.), 1st ed., pp. 41–94, Marcel Dekker, New York (1972).

    Google Scholar 

  67. D. B. Jacobs and J. Zimmerman, in Polymerization Processes (C. E. Schildknecht and I. Skeist, Eds.), 1st ed., pp. 424–467, Wiley, New York (1977).

    Google Scholar 

  68. N. Ogata, Studies on poly condensation reactions of nylon salt. I. The equilibrium in the system of polyhexamethylene adipamide and water, Makromol. Chem. 42, 52–67 (1960).

    Article  CAS  Google Scholar 

  69. N. Ogata, Studies on polycondensation reactions of nylon salt. II. The rate of polycondensa-tion reaction of nylon 66 salt in the presence of water, Makromol. Chem. 43,117–131 (1961).

    Article  CAS  Google Scholar 

  70. A. Kumar, S. Kuruville, A. R. Raman, and S. K. Gupta, Simulation of reversible nylon-6,6 polymerization, Polymer 22, 387–390 (1981).

    Article  CAS  Google Scholar 

  71. A. Kumar, R. K. Agarwal, and S. K. Gupta, Simulation of reversible nylon-6,6 polymeri-zation in homogeneous continuous-flow stirred tank reactors, J. Appl Polym. Sci. 27, 1759–1769 (1982).

    Article  CAS  Google Scholar 

  72. F. C. Chen, R. G. Griskey, and G. H. Beyer, Thermally induced solid state polycondensation of nylon 6–6, nylon 6–10 and polyethylene terephthalate, AIChE J. 15, 680–685 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Gupta, S.K., Kumar, A. (1987). Nylon Reactors. In: Reaction Engineering of Step Growth Polymerization. The Plenum Chemical Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1801-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1801-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9008-7

  • Online ISBN: 978-1-4613-1801-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics