Skip to main content

Linear Step Growth Polymerization Violating the Equal Reactivity Hypothesis

  • Chapter
Book cover Reaction Engineering of Step Growth Polymerization

Part of the book series: The Plenum Chemical Engineering Series ((PCES))

  • 517 Accesses

Abstract

In Chapter 2, it was assumed that the functional groups of the various oligomers have the same reactivity, independent of the chain length, n, of the molecules on which they are located. Mathematical results derived for step growth polymerization based on the equal reactivity hypothesis were subsequently used to explain the gross kinetic features of the polyesterification of adipic acid with ethylene glycol. Comparison with experimental data sufficiently indicated that the overall polymerization is far more complex and the assumption of the equal reactivity hypothesis is a considerable simplification. This is true not only for polyesterification, but for most step growth polymerization systems.1 In addition, as the polymerization progresses, the viscosity of the reaction mass increases by severalfold and the overall reaction, at some stage depending upon the reactor used, becomes mass transfer controlled.2–5 In diffusion controlled reactions, the method of reactor analysis is quite different and will be discussed in Chapter 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. H. Solomon, ed. Step Growth Polymerization ,Marcel Dekker, New York (1972).

    Google Scholar 

  2. S. K. Gupta and A. Kumar, Simulation of step growth polymerization, Chem. Eng. Commun. 20, 1–52 (1983).

    Article  CAS  Google Scholar 

  3. M. Amon and C. D. Denson, Simplified analysis of the performance of wiped-film polycondensation reactors, Ind. Eng. Chem. Fundam. 19, 415–420 (1980).

    Article  CAS  Google Scholar 

  4. S. K. Gupta, N. L. Agarwalla, and A. Kumar, Mass transfer effects in polycondensation reactors wherein functional groups are not equally reactive, J. Appl. Polym. Sci. 27, 1217–1231 (1982).

    Article  CAS  Google Scholar 

  5. S. K. Gupta, A. Kumar, and K. K. Agarwal, Simulation of AA’ + B’B reversible polymerization with mass transfer of condensation products, Polymer 23, 1367–1371 (1982).

    Article  CAS  Google Scholar 

  6. L. C. Case, Molecular distributions in polycondensations involving unlike reactants. II. Linear distributions, J. Polym. Sci. 29, 455–495 (1958).

    Article  CAS  Google Scholar 

  7. R. W. Lenz, C. E. Handlovitz, and H. A. Smith, Phenylene sulfide polymers. III. The synthesis of linear polyphenylene sulfide, J. Polym. Sci. 58, 351–367 (1962).

    Article  CAS  Google Scholar 

  8. J. H. Hodkin, Reactivity changes during polyimide formation, J. Polym. Sci. Polym. Chem. Ed. 14, 409–431 (1976).

    Article  Google Scholar 

  9. V. S. Nanda and S. C. Jain, Effect of variation of the bimolecular rate constant with chain length on the statistical character of condensation polymers, J. Chem. Phys. 49,1318–1320 (1968).

    Article  CAS  Google Scholar 

  10. G. B. Taylor, The distribution of the molecular weight of nylon as determined by fractionation in a phenol-water system, J. Am. Chem. Soc. 69, 638–644 (1947).

    Article  CAS  Google Scholar 

  11. S. I. Kuchanov, M. L. Keshtov, P. G. Halatur, V. A. Vasnev, S. V. Vinogradova, and V. V. Korshak, On the principle of equal reactivity in solution polycondensation, Macromol Chem. 184, 105–111 (1983).

    Article  CAS  Google Scholar 

  12. S. K. Gupta, N. L. Agarwalla, P. Rajora, and A. Kumar, Simulation of reversible polycondensations with monomers having reactivities different from that of higher homologs, J. Polym. Sci. Polym. Phys. Ed. 20, 933–945 (1982).

    Article  CAS  Google Scholar 

  13. A. Kumar, P. Rajora, N. L. Agarwalla, and S. K. Gupta, Reversible condensation character-ized by unequal reactivities, Polymer 23, 222–228 (1982).

    Article  CAS  Google Scholar 

  14. R. Goel, S. K. Gupta, and A. Kumar, Rate of condensation polymerization for monomers having reactivities different from their polymers, Polymer 18, 851–852 (1977).

    Article  CAS  Google Scholar 

  15. S. K. Gupta, A. Kumar, and A. Bhargava, Molecular weight distributions and moments for condensation polymerizations characterized by two rate constants, Europ. Polym. J. 15, 557–564 (1979).

    Article  CAS  Google Scholar 

  16. S. K. Gupta, A. Kumar, and A. Bhargava, Molecular weight distribution and moments for condensation polymerization of monomers having reactivities different from their homologues, Polymer 20, 305–310 (1979).

    Article  CAS  Google Scholar 

  17. A. Kumar, S. K. Gupta, and R. Saraf, Condensation polymerization of ARB type monomers in CSTRs wherein the monomer is R times more reactive than other homologues, Polymer 21, 1323–1326 (1980).

    Article  CAS  Google Scholar 

  18. S. K. Gupta, A. Kumar, and R. Saraf, Condensation polymerization in ideal continuous flow-stirred tank reactors of monomers violating the equal reactivity hypothesis, J. Appl. Polym. Sci. 25, 1049–1058 (1980).

    Article  CAS  Google Scholar 

  19. A. S. Gupta, A. Kumar, and S. K. Gupta, Condensation polymerization with unequal reactivity in segregated HCSTRs, British Polymer J. 13, 76–81 (1981).

    Article  Google Scholar 

  20. L. H. Peebles, Molecular Weight Distribution in Polymers ,1st ed., Interscience, New York (1971).

    Google Scholar 

  21. K. S. Gandhi and S. V. Babu, Kinetics of step polymerization with unequal reactivities, AIChE J. 25, 266–272 (1979).

    Article  CAS  Google Scholar 

  22. H. Kilkson, Generalization of various polycondensation problems, Ind. Eng. Chem. Fundam. 7, 354–363 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Gupta, S.K., Kumar, A. (1987). Linear Step Growth Polymerization Violating the Equal Reactivity Hypothesis. In: Reaction Engineering of Step Growth Polymerization. The Plenum Chemical Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1801-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1801-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9008-7

  • Online ISBN: 978-1-4613-1801-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics