Proteins pp 675-681 | Cite as

Properties of the Hydrolase that Catalyzes Removal of the Blocked NH2-Terminal Amino Acid Residues from Polypeptides

  • Wanda M. Jones
  • Lois R. Manning
  • James M. Manning


Acylpeptide hydrolase catalyzes the removal of the terminal blocking group together with the first amino acid residue of a peptide substrate: Acyl – AA1 - AA2 - AA3… AAn → Acyl - AA1 + AA2 - AA3… AAn The enzyme purified from human red cells has no detectable acetylase or carboxypeptidase activity. The enzyme activity is most conveniently assayed by use of blocked amino acid p-nitroanilides as substrates, or by the appearance of a new, free amino group in a peptide substrate1.


Peptide Substrate Pyroglutamic Acid Acetyl Amino Iodide Anion Carboxypeptidase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.M. Jones, and J.M. Manning, Acylpeptide Hydrolase Activity from Erythocytes, Biochem. Biophys. Res. Commun. 126: 933 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Tsunasawa, K. Narita, and K. Ogata, Purification and Properties of Acylamino Acid-Releasing Enzyme from Rat Liver, J. Biochem. 77: 89 (1975).PubMedGoogle Scholar
  3. 3.
    W. Gade, and J.L. Brown, Purification and Partial Characterization of a-N-Acylpeptide Hydrolase from Bovine Liver, J. Biol. Chem. 253: 5012 (1978).PubMedGoogle Scholar
  4. 4.
    O.L. Schonberger, and K. Tschesche, N-Acetylalanine Aminopeptidase: A New Enzyme from Human Erythrocytes, Z. Physiol. Chem. 362: 865 (1981).CrossRefGoogle Scholar
  5. 5.
    J. Witheiler, and D.B. Wilson, The Purification and Characterization of a Novel Peptidase from Sheep Red Cells, J. Biol. Chem. 247: 2217 (1972).PubMedGoogle Scholar
  6. 6.
    A. Yoshida, and M. Lin, NH2-Terminal Formylmethyionine and NH2- Terminal Methionine-Cleaving Enzymes in Rabbits, J. Biol. Chem. 247: 952 (1972).PubMedGoogle Scholar
  7. 7.
    V. Massey, and R.A. Alberty, Ionization Constants of Fumarase, Biochim. Biophys. Acta. 13: 354 (1954).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Jornall, Acetylation of Protein N-Terminal Amino Groups: Structural Observations on a-Amino Acetylated Proteins, J. Theoret. Biol. 55: 1 (1975).CrossRefGoogle Scholar
  9. 9.
    A. Hershko, H. Heller, E. Eytan, G. Kaklij, and I.A. Rose, Role of the a-Amino Group of Protein in Ubiquitin-Mediated Protein Breakdown, Proc. Natl. Acad. Sci. 81:7021 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    R.E. Webster, D.L. Engelhardt, and N.D. Zinder, In Vitro Protein Synthesis: Chain Initiation, Proc. Natl. Acad. Sci. 55:155 (1966).PubMedCrossRefGoogle Scholar
  11. 11.
    H.G. Lebherz, O.J. Bates, and R.A. Bradshaw, Cellular Fructose-P2 Aldolase has a Derivatized (Blocked) NH2-Terminus, J. Biol. Chem. 259: 1132 (1984).PubMedGoogle Scholar
  12. 12.
    F. Wold, Acetylated N-Terminals in Proteins: A Perennial Enigma, Trends in Biochemical Sciences 9: 256 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Wanda M. Jones
    • 1
  • Lois R. Manning
    • 1
  • James M. Manning
    • 1
  1. 1.The Rockefeller UniversityNew YorkUSA

Personalised recommendations