Proteins pp 581-598 | Cite as

EscherichiaColi ADPglucose Synthetase Substrate-Inhibitor Binding Sites Studied by Site(S) Directed Chemical Modification and Mutant Enzyme Characterization

  • Young Moo Lee
  • Charles E. Larsen
  • Jack Preiss


ADPglucose synthetase catalyzes the synthesis of ADPglucose from α-glucose 1-P and ATP (reaction 1) (1) ATP + a-glucose 1-P ⇌ ADPglucose + PPi ADPglucose is the glucosyl donor for starch synthesis in plants and for glycogen synthesis in bacteria and ADPglucose synthetase has been shown to be the major regulatory enzyme for a 1,4 glucan sythesis in bacteria as well as in plants.


Activator Binding Site Incorporated Peptide CNBr Peptide Photoaffinity Probe Bacterial Glycogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Preiss, S.-G. Yung, and P. A. Baecker, Regulation of bacterial glycogen synthesis, Molec. Cell Biochem. 57: 61–80 (1983).Google Scholar
  2. 2.
    J. Preiss, Bacterial glycogen synthesis and its regulation, Ann. Rev. Microbiol. 38: 419–458 (1984).CrossRefGoogle Scholar
  3. 3.
    J. Preiss, Regulation of adenosine diphosphate glucose pyrophosphorylase, Adv. Enyzmol. Related areas Mol Biol. 46: 317–381 (1978).Google Scholar
  4. 4.
    J. Preiss, and D. A. Walsh, The Comparative biochemistry of glycogen and starch, In V. Ginsberg (ed). Biology of Carbohydrates, Vol. 1, John Wiley and Sons, Inc., New York (1981) pp 199–314.Google Scholar
  5. 5.
    T. H. Haugen, A. Ishaque, A. K. Chatterjee, and J. Preiss, Purification of Escherichia coli ADPglucose pyrophosphorylase by affinity chromatography, FEBS letters, 42: 205–208 (1974).PubMedCrossRefGoogle Scholar
  6. 6.
    T. W. Okita, R. L. Rodriguez, and J. Preiss, Biosynthesis of tfacterial glycogen: cloning of the glycogen biosynthetic enzyme structural genes of Escherichia coli, J. Biol. Chem., 256: 6944–6952 (1981).PubMedGoogle Scholar
  7. 7.
    P. A. Baecker, C. E. Furlong, and J. Preiss, Biosynthesis of Bacterial Glycogen: Primary structure of Escherichia coli ADPglucose synthetase as deduced from the nucleotide sequence of the gig C gene. J. Biol. Chem., 258: 5084–5086 (1983).PubMedGoogle Scholar
  8. 8.
    T. H. Haugen, A. Ishaque, and J. Preiss, Biosynthesis of Bacterial Glycogen: Characterization of the subunit structure of Escherichia coli B glucose-1-phosphate adenylyltransferase (ec, J. Biol. Chem., 251: 7880–7885 (1976).PubMedGoogle Scholar
  9. 9.
    T. F. Parsons, and J. Preiss, Biosynthesis of bacterial glycogen. Isolation and characterization of the pyridoxal-P allosteric activator site and the ADPglucose-protected pyridoxal-P binding site of Escherichia coli B ADPglucose synthase, J. Biol. Chem., 253:7638–7645 (1978).PubMedGoogle Scholar
  10. 10.
    W. K. Kappel, and J. Preiss, Biosynthesis of Bacterial glycogen: purification and characterization of ADPglucose pyrophosphorylase with modified regulatory properties from Escherichia coli B mutant CL 1136-504, Arch. Biochem. Biophys. 209: 15–28 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    C. A. Carlson, and J. Preiss, Modification of the allosteric activator site of Escherichia coli ADPglucose synthetase by trinitrobenzenesulfonate, Biochemistry, 20: 7519–7528 (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    C. A. Carlson, and J. Preiss, Involvement of Arginine residues in the Allosteric Activation of Escherichia coli ADPglucose synthetase, Biochemistry, 21: 1929–1934 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    R. Potter, and B. E. Haley, Photoaffinity labeling of nucleotide binding sites with 8-azidopurine analogs: Techniques and applications, Methods Enzymol. 91: 613–633 (1982).CrossRefGoogle Scholar
  14. 14.
    N. Creuzat-Sigal, M. Latil-Damotte, J. Cattoneo, and J. Puig, Genetic analysis and biochemical characterization of mutants impairing glycogen metabolism in Escherichia coli K12. In Biochemistry of the Glycosidic linkage (R. Piras, and H. G. Pontis, eds.), pp. 647–680, Academic Press, New York (1972).Google Scholar
  15. 15.
    K. Muneyama, R. J. Bauer, D. A. Shuman, R. K. Robins, and L. N. Simon, Chemical synthesis and biological activity of 8-substituted adenosine 3,,5t-cyclic monophosphate derivatives, Biochemistry, 10: 2390–2395 (1971).PubMedCrossRefGoogle Scholar
  16. 16.
    T. H. Haugen, and J. Preiss, Biosynthesis of Bacterial Glycogen: The nature of the binding, of substrates and effectors to ADPglucose synthase, J. Biol. Chem., 254: 127–136 (1979).PubMedGoogle Scholar
  17. 17.
    J. G. Riordan, K. D. McElvany, and C. L. Borders, Arginyl residues: anion recognition sites in enzymes. Science, 195: 884–886 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    P. Chou, and G. D. Fasman, Conformational parameters for amino acids in helical, 3 sheet and random coil regions calculated from proteins. Biochemistry, 13: 211–222 (1976).CrossRefGoogle Scholar
  19. 19.
    J. L. Crawford, W. N. Lipscomb, and C. G. Schellman, The reverse turn as a polypeptide conformation in globular proteins. Proc. Natl. Acad. Sci. USA, 70: 538–542 (1973).PubMedCrossRefGoogle Scholar
  20. 20.
    I. D. Kuntz, J. Amer. Chem. Soc., protein folding. 94: 4009–4012 (1972).Google Scholar
  21. 21.
    E. Gross, The cyanide bromide reaction, Methods Enzymol. 11: 238–255.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Young Moo Lee
    • 1
  • Charles E. Larsen
    • 1
  • Jack Preiss
    • 1
  1. 1.Department of BiochemistryMichigan State UniversityEast LansingUSA

Personalised recommendations