Proteins pp 445-453 | Cite as

The Protein Identification Resource (PIR): An On-Line Computer System for the Characterization of Proteins Based on Comparisons with Previously Characterized Protein Sequences

  • David G. George
  • Winona C. Barker
  • Lois T. Hunt


This conference is dedicated to examining new methods for the isolation and characterization of proteins. One extremely effective method for the characterization of a new protein involves the comparison of its amino acid sequence with the sequences of previously determined proteins. Although: this method is not new (but dates back to the early days of protein sequencing methodology), the wealth of information available is only recently being fully appreciated. The rapid increase in the accumulation of sequence data, owing to recombinant DNA technology, has greatly heightened interest in this area and has made large database searching a much more fruitful enterprise. The primary structures of well over 3, 000 proteins containing almost three quarters of a million residues are now known, more than double what was known just 5 years ago.


Human Epidermal Growth Factor Receptor Epidermal Growth Factor Receptor Protein Amino Acid Percentage Sequence Comparison Method Nucleic Acid Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. T. Hunt and M. O. Dayhoff, Evolution of chromosomal proteins, in: “Macromolecular Sequences in Systematic and Evolutionary Biology,” M. Goodman, ed., Plenum, New York (1982).Google Scholar
  2. 2.
    J. Downward, Y. Yarden, E. Mayes, G. Scrace, N. Totty, P. Stockwell, A. Ullrich, J. Schlessinger, and M. D. Waterfield, Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences, Nature 307: 521 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    A. Ullrich, L. Coussens, J. S. Hayflick, T. J. Dull, A. Gray, A. W. Tam, J. Lee, Y. Yarden, T. A. Libermann, J. Schlessinger, J. Downward, E. L. V. Mayes, N. Whittle, M. D. Waterfield, and P. H. Seeburg, Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells, Nature 309: 418 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    W. C. Barker and M. O. Dayhoff, Viral src gene products are related to the catalytic chain of mammalian cAMP-dependent protein kinase, Proc. Nat. Acad. Sci. USA 79: 2836 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    M. L. Privalsky, R. Ralston, and J. M. Bishop, The membrane glycoprotein encoded by the retroviral oncogene v-erb-B is structurally related to tyrosine-specific protein kinases, Proc. Nat. Acad. Sci. USA 81: 704 (1984),PubMedCrossRefGoogle Scholar
  6. 6.
    G. Naharro, K. C. Robbins, and E. P. Reddy, Gene product of v-fgr one: hybrid protein containing a portion of actin and a tyrosine-specific protein kinase, Science 223: 63 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Gilmore, J.E. DeClue, and G. S. Martin, Protein phosphorylation at tyrosine is induced by the v-erbB gene product in vivo and in vitro, Cell 40: 609 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    R. M. Kris, I. Lax, W. Gullick, M. D. Waterfield, A. Ullrich, M. Fridkin, and J. Schlessinger, Antibodies against a synthetic peptide as a probe for the kinase activity of the avian EGF receptor and v-erb-B protein, Cell 40: 619 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    M. O. Dayhoff, R.M. Schwartz, H. R. Chen, W. C. Barker, L. T. Hunt, and B. C. Orcutt, Nucleic acid sequence database, DNA 1: 51 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    B. C. Orcutt, D. G. George, J. A. Fredrickson, and M. O. Dayhoff, Nucleic acid sequence database computer system, Nucl. Acids Res. 10: 157 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    B. C. Orcutt, D. G. George, and M. O. Dayhoff, Protein and nucleic acid sequence database systems, Annu. Rev. Biophys. Bioeng. 12: 419 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    M. O. Dayhoff, R. V. Eck, M. A. Chang, and M. R. Sochard, “Atlas of Protein Sequence and Structure 1965,” National Biomedical Research Foundation, Silver Spring, MD (1965).Google Scholar
  13. 13.
    R. V. Eck and M. O. Dayhoff, “Atlas of Protein Sequence and Structure 1966,” National Biomedical Research Foundation, Silver Spring, MD (1966).Google Scholar
  14. 14.
    M. O. Dayhoff, ed., “Atlas of Protein Sequence and Structure,” Vol. 5, National Biomedical Research Foundation, Washington (1972).Google Scholar
  15. 15.
    M. O. Dayhoff, ed., “Atlas of Protein Sequence and Structure,” Vol. 5, Suppl. 3, National Biomedical Research Foundation, Washington (1979).Google Scholar
  16. 16.
    M. O. Dayhoff, P. J. McLaughlin, W. C. Barker, and L. T. Hunt, Evolution of sequences within protein superfamilies, Naturwissenschaften 62: 154 (1975).CrossRefGoogle Scholar
  17. 17.
    M. O. Dayhoff, The origin and evolution of protein superfamilies, Fed. Proc. 35: 2132 (1976).PubMedGoogle Scholar
  18. 18.
    M. O. Dayhoff, W. C. Barker, and L. T. Hunt, Establishing homologies in protein sequences, Methods Enzymol. 91: 524 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    B. C. Orcutt and W. C. Barker, Searching the protein sequence database, Bull. Math. Biol. 46: 545 (1984).PubMedGoogle Scholar
  20. 20.
    M. S. Waterman, General methods of sequence comparison, Bull. Math. Biol. 46: 473 (1984).Google Scholar
  21. 21.
    D. Sankoff and J. B. Kruskal, eds., “Time Warps, String Edits, and Macromolecules: The Theory and practice of Sequence Comparison,” Addison-Wesley, Reading, MA (1983).Google Scholar
  22. 22.
    J. B. Kruskal, An overview of sequence comparison: time warps, string edits, and macromolecules, SIAM Rev. 25: 201 (1983).CrossRefGoogle Scholar
  23. 23.
    S. B. Needleman and C. D. Wunsch, A general method applicable to the search for similarities in the amino acid sequence of two proteins, J. Mol. Biol. 48: 443 (1970).PubMedCrossRefGoogle Scholar
  24. 24.
    P. H. Sellers, On the theory and computation of evolutionary distances, SIAM J. Appl. Math. 26: 787 (1974).CrossRefGoogle Scholar
  25. 25.
    T. F. Smith, M. S. Waterman, and W. M. Fitch, Comparative biosequence metrics, J. Mol. Evol. 18: 38 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    M. S. Waterman, Sequence alignments in the neighborhood of the optimum with general application to dynamic programming, Proc. Nat. Acad. Sci. USA 80: 3123 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    W. R. Widger, W. A. Cramer, R. G. Herrmann, and A. Trebst, Sequence homology and structural similarity between cytochrome b of mitochondrial complex III and the chloroplast b6-f complex: Position of the cytochrome b hemes in the membrane, Proc. Nat. Acad. Sci. USA 81: 674 (1984).PubMedCrossRefGoogle Scholar
  28. 28.
    R. M. Schwartz and M. O. Dayhoff, Matrices for detecting distant relationships, in: “Atlas of Protein Sequence and Structure,” Vol. 5, Suppl. 3, M. O. Dayhoff, ed., National Biomedical Research Foundation, Washington (1979).Google Scholar
  29. 29.
    D. F. Feng, M. S. Johnson, and R. F. Doolittle, Aligning amino acid sequences: comparison of commonly used methods, Mol. Evol. 21: 112 (1985).CrossRefGoogle Scholar
  30. 30.
    A. J. Gibbs and G. A. Mclntyre, The diagram, a method for comparing sequences, its use with amino acjid and nucleotide sequences, Eur. Biochem. 16: 1 (1970).CrossRefGoogle Scholar
  31. 31.
    A. D. McLachlan, Tests for comparing related amino-acid sequences. Cytochromec and cytochromec, J. Mol. Biol. 61: 409 (1971).CrossRefGoogle Scholar
  32. 32.
    J. V. Maizel, Jr. and R. P. Lenk, Enhanced graphic matrix analysis of Inucleic acid and protein sequences, Proc. Nat. Acad. Sci. USA 78: 7665 (1981).PubMedCrossRefGoogle Scholar
  33. 33.
    R. Staden, An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences, Nucl. Acids Res. 10: 2951 (1982).PubMedCrossRefGoogle Scholar
  34. 34.
    D. G. George, L.-S. L. Yeh, and W. C. Barker, Unexpected relationships between bacteriophage lambda hypothetical proteins and bacteriophage T4 tail-fiber proteins, Biochem. Biophys. Res. Commun. 115: 1061 (1983).PubMedCrossRefGoogle Scholar
  35. 35.
    W. J. Wilbur and D. J. Lipman, Rapid similarity searches of nucleic acid and protein data banks, Proc. Nat. Acad. Sci. USA 80: 726 (1983).PubMedCrossRefGoogle Scholar
  36. 36.
    W. J. Wilbur and D. J. Lipman, The context dependent comparison of biological sequences, SIAM J. Appl. Math. 44: 557 (1984).CrossRefGoogle Scholar
  37. 37.
    D. J. Lipman and W. R. Pearson, Rapid and sensitive protein similarity searches, Science 227: 1435 (1985).PubMedCrossRefGoogle Scholar
  38. 38.
    M. O. Dayhoff and B. C. Orcutt, Methods for identifying proteins by using partial sequences, Proc. Nat. Acad. Sci. USA 76: 2170Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • David G. George
    • 1
  • Winona C. Barker
    • 1
  • Lois T. Hunt
    • 1
  1. 1.National Biomedical Research FoundationGeorgetown University Medical CenterWashingtonUSA

Personalised recommendations