Skip to main content

Abstract

The main problem in the use of solar energy is the daily and yearly variations, which are not in phase with the variations of energy demand. Therefore, for widespread application of solar energy, it is necessary to store energy collected during “on” times in the form of hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. B. Meinel and M. P. Meinel: Applied Solar Energy-An Introduction ,Addison-Wesley Publ. Co., Reading, Massachusetts (1976).

    Google Scholar 

  2. A. L. Robinson: Science 184:785–787; 884–887 (1974).

    Article  Google Scholar 

  3. Philips Research Press Release No. 724/1230/108 E (1974); 735/1001/122 E (1974).

    Google Scholar 

  4. J. O’M. Bockris, N. Bonciocat, and F. Gutman: An Introduction to Electrochemical Science ,Taylor and Francis, London (1974).

    Google Scholar 

  5. Technology of Efficient Energy Utilization, Report of a NATO Science Committee Conference, Les Arcs, France, October 8–12, 1973.

    Google Scholar 

  6. F. v. Sturm: Elektrochemische Stromerzeugung, [Electrochemical Current Production] ,Verlag Chemie, Weinheim (1969).

    Google Scholar 

  7. K. G. Pankhurst: British Rail Research, personal communication, October (1974).

    Google Scholar 

  8. J. O’M. Bockris and A. K. N. Reddy: Modern Electrochemistry ,Rosetta Edition, Plenum Press, New York (1974).

    Google Scholar 

  9. H. Cnobloch, Neue Zürcher Zeitung ,Supplement, “Forschung und Technik,” February 18, No. 40 (1976).

    Google Scholar 

  10. P. Brennecke, H. Ewe, E. Justi, and W. Rosenberger, Journal of Power Sources 16 (4): 271–284 (1985).

    Article  Google Scholar 

  11. R. T.Dann: Machine Design ,p. 130, May 17 (1973).

    Google Scholar 

  12. D. W. Rabenhorst, Intersociety Energy Conversion Engineering Conf. Proc., p. 38 (1971). D. W. Rabenhorst, presented at the 14th Annual Symposium, New Mexico Sections of the American Society of Mechanical Engineers and the American Society for Metals, University of New Mexico, Albuquerque, February 28 (1974).

    Google Scholar 

  13. R. Kipker: Neue Druckgasflasche für 300 bar Betriebsüberdruck [New high-pressure gas cylinders for 300 atm operation], Gas Aktuell ,9:3 (June 1975).

    Google Scholar 

  14. Bundesministerium für Forschung und Technologie (publisher): Auf dem Wege zu neuen Ener-giesystemen ,Teil III, Wasserstoff und andere nicht fossile Energieträger [On the way to New Energy-Producing Systems ,Part III, Hydrogen and Other Non-Fossil Energy Media] ,Bonn (1975).

    Google Scholar 

  15. Anonymous: Europas gröβter Hochdruck-Gasbehälter [Europe’s Largest High-Pressure Gas Container], Gasverwendung 7 (1973).

    Google Scholar 

  16. DIN 3397 and DIN 3396.

    Google Scholar 

  17. H. Justi: Verleich und Wirtschaftlichkeit der verschiedenen modernen Methoden der Gasspeicherung [Comparison and Economics of Various Modern Methods for Gas Storage], Erdoel Kohle-Erdgas-Petrochem. (Aug 1966).

    Google Scholar 

  18. B. Höfling et al.: Speichermöglichkeiten für Gase und Flüssigkeiten im Untergrund [Storage possibilities for the underground storage of gases and liquids], Fortschr. Ber. VDI Z. (June 1968).

    Google Scholar 

  19. Jahrbuch für Bergbau, Energie, Mineralöl und Chemie [Yearbook for Mining, Energy, Mineral/ Oils, and Their Chemistry], Verlag Glückauf, Essen (1973).

    Google Scholar 

  20. J. H. Kelley et al.: Report of the NASA Hydrogen Energy Systems Technology Study, JPL 5040-1, Calif. Inst. Technology, Pasadena (Dec. 1975).

    Google Scholar 

  21. Anonymous, Neuer Erdgas-Untergrundspeicher in Betrieb, Gaswaerme Int. (Oct. 1973).

    Google Scholar 

  22. Bundesministerium für Forschung und Technologie. (publisher): Einsatzmöglichkeiten von Ener-giesystemen ,III, Wasserstoff [Opportunities for the Application of New Energy-Conversion Systems. III. Hydrogen]. Bonn (1975).

    Google Scholar 

  23. A. B. Walters: Technical and environmental aspects of underground hydrogen storage, Proc. 1st World Hydrogen Energy Conf., Vol. II, 2B-65 (T. N. Veziroglu, ed.), Pergamon Press, New York (1976).

    Google Scholar 

  24. K. M. Coats: Some Technical and Economic Aspects of Underground Gas Storage, J. Pet Technol. (Dec. 1966).

    Google Scholar 

  25. D. P. Gregory and J. Wurm: Production and distribution of hydrogen as a universal fuel, Proc. 7th Intersoc. Energy Conv. Eng. Conf., 1329, San Diego (1972).

    Google Scholar 

  26. NASA-ASEE Summer Study Report: A Hydrogen Energy Carrier, Johnson Space Center, (1973).

    Google Scholar 

  27. R. Schraewer: Technology of hydrogen liquefaction, use of liquid hydrogen, its storage and transport or transmission, in: The Hydrogen Energy Concept ,Ispra Courses H2/75 No. 14 Sept. 29-Oct. 10, (1975).

    Google Scholar 

  28. J. C. Mullins, W. T. Ziegler, and B. S. Kirk: The Thermodynamic Properties of Para Hydrogen from 1 to 22 K, NBS-Techn. Rep. 1 (1961).

    Google Scholar 

  29. C. R. Baker and R. L. Shaner: A study of the efficiency of hydrogen liquefaction, Proc. 1st World Hydrogen Energy Conf., Vol. II, 2B-17 (T. N. Veziroglu, ed.), Pergamon Press, New York (1976).

    Google Scholar 

  30. C. R. Baker and L. C. Matsch: Production and distribution of liquid hydrogen, Adv. Petr. Chem. Refin. 10 (1965).

    Google Scholar 

  31. C. L. Newton: Hydrogen production, liquefaction and use, Cryog. News (Aug. 1967).

    Google Scholar 

  32. N. C. Hallet: Study Cost and System Analysis of Liquid Hydrogen Production, Final Report NASA CR 73 226.

    Google Scholar 

  33. J. R. Bartlit, F. J. Edesknty, and K. D. Williamson, Jr. Experience in Handling, Transport, and Storage of Liquid Hydrogen-The Recyclable Fuel, Proc.7th Intersoc. Energy Conv. Eng. Conf., p. 1312, San Diego (1972).

    Google Scholar 

  34. R. Schraewer and W. Daus: Herstellung und Förderung von Wasserstoffmatsch, [Production and transport of hydrogen slush], Forschungsberieht NT 200 des BMWF (1974).

    Google Scholar 

  35. C. F. Sindt: A summary of the characterization study of slush hydrogen, Cryogenics (October 1970).

    Google Scholar 

  36. A. S. Raqual and D. E. Daney: Preparation and Characterization of Slush Hydrogen and Nitrogen Gels, NBS-Techn. Note 378 (1969).

    Google Scholar 

  37. J. H. N. van Vucht, F. A. Kuijpers, and H. C. A. Bruning, Philips Res. Rep. 25(2):133 (1970).

    Google Scholar 

  38. T. B. Flanagan and S. Tanaka: Hydrogen storage by LaNis: Fundamentals and applications, Proc. Symp. Electrode Materials and Processes for Energy Conversion and Storage (J. D. McIntyre, S. Srinivasan, and F. G. Will, eds.), Electrochem. Soc. Proc., Vol. 77–6 (1977).

    Google Scholar 

  39. K. D. Beccu, H. Lutz, and O. de Pous, Chem.-Ing.-Technik 48(2):161 (1976).

    Article  Google Scholar 

  40. G. Strickland, J. Milan and W.-S. Yu: The behavior of iron titanium hydride test beds: Long term effects, rate studies and modeling, Int. J. Hydro-Energy ,p. 309 (1977).

    Google Scholar 

  41. D. M. Gruen, M. H. Mendelsohn, and I. Sheft: Absorption of hydrogen by the intermetallics NdNi5 and LaNi4Cu and a correlation of cell volumes and desorption pressures, Proc. Symp. Electrode Materials and Processes for Energy Conversion and Storage (J. D. McIntyre, S. Srinivasan, and F. G. Will, eds.), Electrochem. Soc. Proc., Vol. 77–6 (1977). J. J. Reilly and R. H. Wiswall, Jr., Inorg. Chem. 13:218 (1974).

    Google Scholar 

  42. J. J. Reilly and J. R. Johnson: Titanium alloy hydrides, their properties and applications, Proc. 1st World Hydrogen Energy Conf., Vol. II, 8B-3 (T. N. Veziroglu, ed.), Pergamon Press, New York (1976).

    Google Scholar 

  43. M. A. Pick and H. Wenzl: Physical metallurgy of TiFe-hydride and its behavior in a hydrogen storage container, Int. J. Hydrogen Energy ,1:413 (1976).

    Article  Google Scholar 

  44. H. H. van Mal: The activation of a lanthanium-nickel-five hydrogen absorbent in: Hydrogen Energy ,Part A, 605 (T. N. Veziroglu, ed.), Pergamon Press, New York (1975),

    Google Scholar 

  45. L. Schlapbach et al., Int. J. Hydrogen Energy ,4:21–28 (1979).

    Article  Google Scholar 

  46. L. C. Beavis et al.: The formation and properties of rare-earth and transition metal hydrides, in: Hydrogen Energy Part A, p. 659, (T. N. Veziroglu, ed.), Pergamon Press, New York (1975).

    Google Scholar 

  47. R. H. Wiswall Jr., and J. J. Reilly: Metal hydrides for energy storage, Proc. 7 Int. Soc. Energy Conv. Eng. Conf., p. 1342, San Diego (1972).

    Google Scholar 

  48. C. H. Waide, J. J. Reilly, and R. H. Wiswall: The application of metal hydrides to ground transport, in: Hydrogen Energy ,Part B, 779 (T. N. Veziroglu, ed.), Pergamon Press, New York (1975).

    Google Scholar 

  49. H. Buchner and R. Povel: Int. J. Hydrogen Energy 7(3):250–266 (1982).

    Article  Google Scholar 

  50. H. Ewe: Electrochem. Acta 17:2267 (1972).

    Article  Google Scholar 

  51. E. Justi: Method and apparatus for storing gaseous fuel for the operation of fuel cells, US.-Pat. 3,350,229 (1963).

    Google Scholar 

  52. E. Justi: DAS 1 265 802 (1968).

    Google Scholar 

  53. H. Ewe, P. Brennecke, E. Justi, and H. J. Selbach, Proceedings of the 3rd International Solar Forum, Hamburg, June 24–26, 1980, pp. 331–336, DGS-Sonnenenergie Verlags GmbH, Munich (1980).

    Google Scholar 

  54. H. Laig-Hörstebrock, H.-J. Schwartz, D. Sprengel, and A. Winsel: Development and Testing of a 3.5 kW Fuel Cell Stack, Ergebnisbericht z. Forschungsvorh. WI. B3-7221-EDU-202-68 des BMFT.

    Google Scholar 

  55. D. Sprengel: Inert Gas Operation of Gas-Diffusion Electrodes, 3rd Int. Symp. on Fuel Cells, Brussels, June 16–20, 1969, in: Société d’ Etudes de Recherches et d’Applications pour l’ Industrie and Société Commercial d’ Applications Scientifiques (eds.), Proceedings, Presses Académiques Européennes, Brussels (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Ewe, H.H., Selbach, HJ. (1987). The Storage of Hydrogen. In: A Solar—Hydrogen Energy System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1781-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1781-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8998-2

  • Online ISBN: 978-1-4613-1781-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics