Skip to main content

Electron Cyclotron Plasma Heating in Tokamaks

  • Chapter
Reviews of Plasma Physics

Abstract

It is universally accepted at present that additional plasma heating is needed to ignite a thermonuclear reaction in a tokamak. Highly promising for this purpose are assumed to be high-frequency methods based on feeding energy to the plasma in the form of electromagnetic waves. High frequency (HF) heating is possible in various frequency bands, each with its own advantages and shortcomings [1–6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. E. Golant, “High-frequency heating in toroidal plasmas,” in: Proceedings of the Joint Varenna-Grenoble International Symposium on Heating in Toroidal Plasmas (1978), Vol. 2, p. 149.

    Google Scholar 

  2. V. V. Alikaev, “HF and microwave methods of plasma heating,” Itogi Nauki Tekh., Ser. Fiz. Plazmy, 1, Part 2, 80 (1981).

    Google Scholar 

  3. K. N. Stepanov et al., “Mode conversion and wave damping in the low-frequency range,” in: Proceedings 2nd Joint Varenna-Grenoble International Symposium, Como (1980), Vol. 1, p. 519.

    Google Scholar 

  4. V. E. Golant and A. D. Piliya, “Linear transformation and absorption of waves,” Usp. Fiz. Nauk, 104, No. 3, 413 (1971).

    Google Scholar 

  5. A. G. Litvak, G. V. Permitin, E. V. Suvorov, and A. A. Fraiman, Pis’ma Zh. Tekh. Fiz., 1, No. 18, 858 (1975).

    Google Scholar 

  6. V. V. Alikaev, Yu. N. Dnestrovskii, V. V. Parail, and B. V. Pereverzev, Preprint IAE-2610, Kurchatov Atomic Energy Institute, Moscow (1976).

    Google Scholar 

  7. V. D. Shafranov, in: Reviews of Plasma Physics, Vol. 3, M. A. Leontovich (ed.), Consultants Bureau, New York (1967).

    Google Scholar 

  8. A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, et al., Plasma Electrodynamics [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  9. A. V. Timofeev and G. N. Chulkov, Fiz. Plazmy, 5, No. 6, 1271 (1979).

    Google Scholar 

  10. I. P. Shkarofsky, Phys. Fluids, 9, 561, 570 (1966).

    Article  ADS  Google Scholar 

  11. E. V. Suvorov and A. A. Fraiman, Izv. Vyssh. Uchebn. Zaved. Radiofiz., 20, 67 (1977).

    Google Scholar 

  12. M. Tanaka, M. Fujiwara, and M. Ikegami, Nagoya University Research Report IPPJ-427 (1979).

    Google Scholar 

  13. H. Weitzner and O. B. Betchelor, Phys. Fluids, 23, No. 7, 1359 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. A. V. Timofeev, Usp. Fiz. Nauk, 110, 329 (1973).

    Google Scholar 

  15. V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma, Gordon and Breach, New York (1961).

    Google Scholar 

  16. J. Preinhaelter and V. Kopecky, J. Plasma Phys., 10, Part 1 (1973).

    Google Scholar 

  17. J. Preinhaelter, Czech. J. Phys., B25, 39 (1975).

    Article  ADS  Google Scholar 

  18. T. Mackawa, S. Tanaka, Y. Terumichi, and Y. Hamada, Nagoya University Research Report IPPJ-313 (1977).

    Google Scholar 

  19. T. Antonsen and W. M. Manheimer, Phys. Fluids, 21 (12), 2295 (1978).

    Article  ADS  MATH  Google Scholar 

  20. A. V. Zvonkov and A. V. Timofeev, Fiz. Plazmy, 6, No. 6, 1219 (1980).

    Google Scholar 

  21. V. I. Fedorov, Pis’ma Zh. Tekh. Fiz., 6, No. 21, 1307 (1980).

    Google Scholar 

  22. Yu. F. Baranov and V. I. Fedorov, in: Proceedings 10th European Conference on Controlled Fusion and Plasma Physics (1981), Vol. 1, paper H-13.

    Google Scholar 

  23. A. D. Piliya and V. I. Fedorov, Zh. Eksp. Teor. Fiz., 57, 1198 (1969).

    Google Scholar 

  24. I. B. Bernstein, Phys. Fluids, 18, No. 3, 320 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Weinberg, Phys. Rev., 126, 1399 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  26. F. De Luca, C. Maroli, and V. Petrillo, Nuovo Cimento, 53B, No. 2, 181 (1979).

    ADS  Google Scholar 

  27. A. K. Nekrasov and A. V. Timofeey, Nucl. Fusion, 10, 377 (1970).

    Article  Google Scholar 

  28. A. V. Timofeev, Usp. Fiz. Nauk, 110, No. 3, 329 (1973).

    MathSciNet  Google Scholar 

  29. N. S. Erokhin and S. S. Moiseev, Usp. Fiz. Nauk, 109, No. 2, 225 (1973).

    Google Scholar 

  30. V. V. Alikaev, Yu. N. Dnestrovskii, V. V. Parail, and G. V. Pereverzev, Fiz. Plazmy, 3, 230 (1977).

    Google Scholar 

  31. A. G. Litvak, G. V. Permitin, E. V. Suvorov, and A. A. Frayman, Nucl. Fusion, 17, 659 (1977).

    Article  ADS  Google Scholar 

  32. I. Fidone, G. Granata, G. Ramponi, and R. L. Meyer, Phys. Fluids, 21, 645 (1978).

    Article  ADS  Google Scholar 

  33. E. Ott, B. Hui, and K. R. Chu, Phys. Fluids, 23, 23, 1031 (1980).

    Article  ADS  MATH  Google Scholar 

  34. O. Eldridge, W. Namkung, and O. C. England, Oak Ridge Natl. Lab. Rep. ORNL/TM-6052 (1977).

    Google Scholar 

  35. F. De Luca, C. Maroli, and V. Petrilo, Nuovo Cimento, 53B, No. 2, 195 (1979).

    ADS  Google Scholar 

  36. Yu. F. Baranov and V. I. Fedorov, Pis’ma Zh. Tekh. Fiz., 7, No. 10, 608 (1981).

    Google Scholar 

  37. Yu. F. Baranov and V. I. Fedorov, Fiz. Plazmy, 9, No. 4, 677 (1983).

    Google Scholar 

  38. S. M. Walfe, D. R. Cohn, R. J. Temkin, and K. Kreisoher, Nucl. Fusion, 19, 389 (1979).

    Article  ADS  Google Scholar 

  39. T. Mackawa, S. Tanaka, Y. Terumichi, and Y. Hamada, J. Phys. Soc. Japan, 48, No. 1, 247 (1980).

    Article  ADS  Google Scholar 

  40. K. Baumgartel, Nucl. Fusion, 19, No. 11, 1543 (1979).

    Article  ADS  Google Scholar 

  41. A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, Nucl. Fusion, 1, 82 (1961).

    Article  Google Scholar 

  42. W. E. Drummond and D. Pines, Nucl. Fusion Suppl., Part 3, 1049 (1962).

    Google Scholar 

  43. A. A. Vedenov, in: Reviews of Plasma Physics, Vol. 3, M. A. Leontovich (ed.), Consultants Bureau, New York (1967).

    Google Scholar 

  44. V. L. Yakimenko, Zh. Eksp. Teor. Fiz., 44, 1534 (1963).

    Google Scholar 

  45. J. Retslands, V. L. Sizonenko, and K. N. Stepanov, Zh. Eksp. Teor. Fiz., 50, 994 (1966).

    Google Scholar 

  46. C. F. Kennel and F. Engelman, Phys. Fluids, 9, 2371 (1966).

    ADS  Google Scholar 

  47. I. Fidone, G. Granata, and R. L. Meyer, Fontenayaux-Roses Preprint EUR-CEA-FC-1053 (1980).

    Google Scholar 

  48. L. D. Landau, Zh. Eksp. Teor. Fiz., 7, 203 (1937).

    Google Scholar 

  49. C. F. F. Karnèy and N. J. Fish, Nucl. Fusion, 21, 1549 (1981).

    Article  Google Scholar 

  50. J. G. Gordey, T. Edlington, and D. Star, Culham Lab. Preprint CML-P636 (1981).

    Google Scholar 

  51. V. V. Parail and G. V. Pereverzev, Fiz. Plasmy, 8, 45 (1982).

    Google Scholar 

Download references

Authors

Editor information

Acad B. B. Kadomtsev

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Consultants Bureau, New York

About this chapter

Cite this chapter

Piliya, A.D., Fedorov, V.I. (1987). Electron Cyclotron Plasma Heating in Tokamaks. In: Kadomtsev, A.B.B. (eds) Reviews of Plasma Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1777-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1777-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8996-8

  • Online ISBN: 978-1-4613-1777-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics